// библиотека для работы с адресными светодиодами #include // библиотека для работы I²C #include // библиотека для работы с часами реального времени #include "TroykaRTC.h" // библиотека для работы с кнопками #include "TroykaButton.h" // инициализируем подключенную кнопку TroykaButton button(10); // номер пина, к которому подключена RGB-матрица #define MATRIX_PIN 11 // количество светодиодов в матрице #define LED_COUNT 40 // инициализация цепочки светодиодов подсветки цифр Adafruit_NeoPixel matrix = Adafruit_NeoPixel(LED_COUNT, MATRIX_PIN, NEO_GRB + NEO_KHZ800); // инициализация светодиода разграничителя Adafruit_NeoPixel dot = Adafruit_NeoPixel(1, 12, NEO_GRB + NEO_KHZ800); // размер массива для времени #define LEN_TIME 12 // размер массива для даты #define LEN_DATE 12 // размер массива для дня недели #define LEN_DOW 12 // создаём объект для работы с часами реального времени RTC clock; // переменные для мигания int ledState = 0; unsigned long previousMillis = 0; unsigned long currentMillis ; // массив для хранения текущего времени char time[LEN_TIME]; // массив для хранения текущей даты char date[LEN_DATE]; // массив для хранения текущего дня недели char weekDay[LEN_DOW]; int hour; int minute; int one; int two; int three; int four; int displaysettings=0; int red=150; int green=200; int blue= 50; void setup() { // инициализация button.begin(); matrix.begin(); dot.begin(); clock.begin(); // метод установки времени и даты в модуль вручную // clock.set(hour,minute,0,27,07,2005,THURSDAY); // метод установки времени и даты автоматически при компиляции clock.set(__TIMESTAMP__); // что бы время не менялось при прошивки или сбросе питания // закоментируйте оба метода clock.set(); pinMode(10, INPUT_PULLUP); } void loop() { // считываем состояние кнопки button.read(); // запрашиваем данные с часов clock.read(); // считаем нажатия чтоб переходить из режима в режим if (button.justPressed()){ displaysettings = displaysettings + 1; } if(displaysettings==0){ // сохраняем текущее время hour = clock.getHour(); minute = clock.getMinute(); } if(displaysettings == 1){ // присваиваем значение считываемое с потенциометра hour = map (analogRead(A0),2, 1020, 0, 23); clock.set(hour,minute,0,27,07,2005,THURSDAY); } if(displaysettings == 2){ // присваиваем значение считываемое с потенциометра minute = map (analogRead(A0), 2, 1018, 0, 59); clock.set(hour,minute,0,27,07,2005,THURSDAY); } if(displaysettings == 3){ // присваиваем значение считываемое с потенциометра red = map (analogRead(A0),0, 1023, 0, 255); } if(displaysettings == 4){ // присваиваем значение считываемое с потенциометра green = map (analogRead(A0),0, 1023, 0, 255); } if(displaysettings == 5){ // присваиваем значение считываемое с потенциометра blue = map (analogRead(A0),0, 1023, 0, 255); } if(displaysettings == 6){ displaysettings = 0; } // делим минуты и часы на разряды one = hour / 10; two = hour % 10; three = minute / 10; four = minute % 10; matrix.clear(); // зажигаем нужные светодиоды matrix.setPixelColor(four, red, green, blue); matrix.setPixelColor(three + 10, red, green, blue); matrix.setPixelColor(two + 20, red, green, blue); matrix.setPixelColor(one + 30, red, green, blue); matrix.show(); // ждём одну секунду delay(10); // мигание разделителя blinking(); } void blinking(){ if (millis() - previousMillis >= 1000) { previousMillis = millis(); if (ledState == 0) { ledState = 1; dot.setPixelColor(0, red, green, blue); } else { ledState = 0; dot.setPixelColor(0, 0, 0, 0); } dot.show(); } }