ARM1176JZF-S

Revision: rOp7

Technical Reference Manual

ARM

Copyright © 2004-2009 ARM Limited. All rights reserved.
ARM DDI 0301H (ID012310)

ARM1176JZF-S

Technical Reference Manual

Copyright © 2004-2009 ARM Limited. All rights reserved.
Release Information

The following changes have been made to this book.

Change history

Date Issue Confidentiality Change

19 July 2004 A Non-Confidential First release.

18 April 2005 B Non-Confidential Minor corrections and enhancements.
29 June 2005 C Non-Confidential rOp1 changes, addition of CPUCLAMP

Figure 10-1 updated.

Section 10.4.3 updated.

Table 23-1 updated.

Minor corrections and enhancements.

22 March 2006 D Non-Confidential Update for rOp2. Minor corrections and enhancements.

19 July 2006 E Non-Confidential Patch update for rOp4.

19 April 2007 F Non-Confidential Update for rOp6 release. Minor corrections and enhancements.

15 February 2008 G Non-Confidential Update for rOp7 release. Minor corrections and enhancements.

27 November 2009 H Non-Confidential Update for rOp7 maintenance release. Minor corrections and enhancements.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM® Limited in the EU and other
countries, except as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may
be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be
adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the
product and its use contained in this document are given by ARM in good faith. However, all warranties implied or
expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable for any
loss or damage arising from the use of any information in this document, or any error or omission in such information,
or any incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Figure 14-1 on page 14-2 reprinted with permission from /EEE Std. 1149.1-2001, IEEE Standard Test Access Port and
Boundary-Scan Architecture by IEEE Std. The IEEE disclaims any responsibility or liability resulting from the
placement and use in the described manner.

Some material in this document is based on /EEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std
754-1985. The IEEE disclaims any responsibility or liability resulting from the placement and use in the described
manner

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this
document to.

Unrestricted Access is an ARM internal classification.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. ii
Non-Confidential, Unrestricted Access

Product Status

The information in this document is final, that is for a developed product.
Web Address

http://waw.arm.com

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved.
Non-Confidential, Unrestricted Access

Contents

ARM1176JZF-S Technical Reference Manual

Preface
ADBOUL thiS DOOK ... e xxii
FEEADACK ...t XXVi

Chapter 1 Introduction
1.1 ADOUL the PrOCESSOT ...t e e e e e e e eaaee s 1-2
1.2 EXtENsions 10 ARMVGoiiiiiiiiiie e 1-3
1.3 TrustZone security @XIENSIONScooiiiiiiiii e 1-4
14 ARM1176JZF-S architecture with Jazelle technologyccccceiiiiiniiiiniiicien, 1-6
1.5 Components Of the ProOCESSOTc..viiiiiiiiie e 1-8
1.6 POWer Managemento e e 1-23
1.7 Configurable OPLIONScciiiiiiiie e 1-25
1.8 PiIpeliNg StAgESeeeeiiie e a e 1-26
1.9 Typical pipeling Operationscooociiiiiiiiiii e 1-28
1.10 ARM1176JZF-S instruction Set SUMMArycccccciiiieriiiie e 1-32
1.1 ProdUCt FEVISIONS ..ottt e e et e e e e e e e e e e s e eaaeaneae 1-47
Chapter 2 Programmer’s Model

21 About the programmer’'s MOdel ... 2-2
2.2 Secure world and Non-secure world operation with TrustZonecccceeeen. 2-3
2.3 Processor operating States ... 2-12
2.4 INStruction 1€NGIheeii e 2-13
25 DAt tYPES ..ot 2-14
26 MeMOTY FOMMALSeeiieiiie e 2-15
2.7 Addresses in @ ProCeSSOr SYSIEMiiiiiiiiiiiiiiie et 2-16
2.8 OPErating MOAESeiiiiieeiiiie et e et e e e e st e e s et e e anee e e snneeesnneeeaneeeens 2-17
29 REGISIEIS ..t e e e ee e e e e et e e e s e e e e e e e aarrreaeaaan 2-18
210 The program status registers ..o 2-24
211 Additional INSIUCHIONSeiiiiii e e a e 2-30
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. iv

ID012310

Non-Confidential, Unrestricted Access

Contents

212 D (o=Y o] 1 o] o PSRRI 2-36
213 Software CONSIAEratioNSoooeieiiiiiiiie e 2-59
Chapter 3 System Control Coprocessor
3.1 About the system control COPrOCESSONouuiiiiiiiiiiiie e 3-2
3.2 System control ProCeSSOr rEGISErSoiiieiiiiiiieiiiie e 3-13
Chapter 4 Unaligned and Mixed-endian Data Access Support
41 About unaligned and mixed-endian SUPPOIToeveiiiiiieieeeeeieiie e 4-2
4.2 Unaligned aCCESS SUPPOITvieiiiiieiiiiee ettt ettt ettt e e e 4-3
4.3 ENI@N SUPPOTT ...t 4-6
4.4 Operation of Unaligned @CCESSEScccciiiiiiiiiiiiieiii e 4-13
4.5 Mixed-endian aCcCeSS SUPPOITcccoeeiieie i e e e e e e e e e e e aaeeees 4-17
4.6 Instructions to reverse bytes in a general-purpose registercccccceviiiieennine 4-20
4.7 Instructions to change the CPSR E bitcccviiiiiiiiiiiie e 4-21
Chapter 5 Program Flow Prediction
51 About program flow prediCtionccooeiiiiiiiii i 5-2
5.2 Branch prediClion ..o 5-4
5.3 RETUIN STACK ...eiiiiiiii e e ettt e e e e e st e e e e e s nnrbeeeeeeanees 5-7
54 MEMOIY BAITIEIS ...ttt et s 5-8
55 ARM1176JZF-S IMB implementationcccccueiieiiiiiiiie e 5-10
Chapter 6 Memory Management Unit
6.1 ADOUL the MIMU ...ttt 6-2
6.2 TLB Organizationcoiiiiiiiie e s 6-4
6.3 MEMOrY aCCESS SEQUENCEeeeiiiiieieeeeeeeeeeeicitin ettt e e e e e et eaaeeeeeeeesesaaannensnenenenneeees 6-7
6.4 Enabling and disabling the MMU ..o 6-9
6.5 MemMOry @CCESS CONMIOIeiiiiiiiiiiee et 6-11
6.6 Memory region attributesccooiiii i 6-14
6.7 Memory attributes and typesooiiii e 6-20
6.8 MMU DOIES ...t 6-27
6.9 MMU fault ChECKING ...ooeieiiiiie et e e e e e e e e enees 6-29
6.10 Fault status and address ... 6-34
6.11 Hardware page table translation ... 6-36
6.12 MMU AESCIIPLOIS ...ttt e et e 6-43
6.13 MMU software-accessible registersoooviiiriiiiiiie e 6-53
Chapter 7 Level One Memory System
71 About the level one memory SYStEM ... 7-2
7.2 Cache Organizationccoouiii e 7-3
7.3 Tightly-Coupled MEMOTYooiiiiiieee e e e e e e e as 7-7
7.4 DM A ettt bt e ee b e bt e etee et e e bt e enteenaeeenee 7-10
7.5 TCM and cache iNteractionscooouiiiiiiiiiiii e 7-12
7.6 Wit DUFEr et a e 7-16
Chapter 8 Level Two Interface
8.1 About the level two interface ... 8-2
8.2 Synchronization Primitivescooiii i 8-6
8.3 AXI control signals in the ProCeSSOr ... 8-8
8.4 Instruction Fetch Interface transfers ..o 8-14
8.5 Data Read/Write Interface transfersccccoiiiiiiiiiieee e 8-15
8.6 Peripheral Interface transfers ... 8-37
8.7 ENQIANNESS ..ottt e e e e e e e e eanns 8-38
8.8 o Yo 1C=To = Lo ot Y- PO PUPPRRN 8-39
Chapter 9 Clocking and Resets
9.1 About clocking and rESEtSeeiiiiiie e 9-2
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. \

ID012310

Non-Confidential, Unrestricted Access

Contents

9.2 Clocking and resets With NO TEM ooiiiiiiiie e 9-3
9.3 Clocking and resets With IEMc.oooiiiiiiii e 9-5
9.4 RESEE MOUES ...t 9-10
Chapter 10 Power Control
10.1 ADOUL POWET CONION ...t e e e e e e e e e e e sanreeeeeeenees 10-2
10.2 POWEr ManNagemeNtc.uiiiiiiiiiie e 10-3
10.3 VEP SNUEOWN ...ttt sttt s ennee s 10-6
10.4 Intelligent Energy Managementcocciiiiiiiiii e 10-7
Chapter 11 Coprocessor Interface
111 About the coprocessor interface ... 11-2
11.2 CopProCesSOr PIPEIINE ...ccooiiiieee e e et e e e rae e e 11-3
1.3 Token queue ManagEMENTooiiiiiiii et e e e e eneeeee s 11-9
114 TOKEN QUEBUESoeiieiiiiiit e ettt e ettt e e e e et e e e e e e eaabe e e e e aennbeeeeessnsbaeeaeesenreneas 11-12
11.5 Data tranSTErooiieie e 11-15
11.6 OPEIALIONS ...ttt 11-19
11.7 MUILIDIE COPIOCESSOISeeiiiiiiiiiie ittt 11-22
Chapter 12 Vectored Interrupt Controller Port
121 About the PL192 Vectored Interrupt Controller ... 12-2
12.2 About the processor VIC POrtoooiiiiiiii e 12-3
12.3 TimiNg Of the VIC POIt ...t 12-5
12.4 Interrupt entry flowchart ... 12-7
Chapter 13 Debug
13.1 DEDUG SYSIEMS ...t e e et e e e e et e e e e e snnbeee e e e ennes 13-2
13.2 About the debug UNIt ..o 13-3
13.3 DEDbUQG MEGISIEIS ...t e 13-5
13.4 CP14 registers reSeteii i 13-25
13.5 CP14 debug iNStrUCHONSeeeiiiieeie e 13-26
13.6 External debug interfacecccooieeeiiie e 13-28
13.7 Changing the debug enable signalscccoooviiiieiiiiiie e 13-31
13.8 DEDUQG VENES .. e 13-32
13.9 DEbUG EXCEPLION ..o 13-35
1310 DebUg Stateooieiie e 13-37
13.11 Debug communications channelccooiiiiiiiiii e 13-42
13.12 Debugging in @ cached SYSteMooioiiiiiiiiii e 13-43
13.13 Debugging in a system with TLBScoooviiiiiiiec e 13-44
13.14 Monitor debug-mode debuggingccueieriiiiiiiiiiie e 13-45
13.15 Halting debug-mode debuggingcccoviiiiiiiiiiiii e 13-50
1316 EXIErnal Signalscoooeiiiiiiii e 13-52
Chapter 14 Debug Test Access Port
141 Debug Test Access Port and Debug state ..., 14-2
14.2 Synchronizing RealVIew ICE ...t 14-3
14.3 Entering Debug Stateoooiiiiii e 14-4
144 EXiting DEbUQG StAtecoiiiiiiiiiie e 14-5
145 The DBGTAP port and debug regisStersccccveeiiciiiiie i i 14-6
14.6 DEbUQG FEGISIEIS ... e s 14-8
14.7 Using the Debug Test ACCESS POrtcoceiiiiiiiiiiii e 14-21
14.8 DEDUQG SEQUENCES ...ttt 14-29
14.9 Programming debug @VENLSooeiiiiiiiii e 14-40
14.10 Monitor debug-mode debuggingccccviiiiiiiiiiiie e 14-42
Chapter 15 Trace Interface Port
15.1 About the ETM iNterfacecccoviiiiiiiiiieee e 15-2
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. Vi

ID012310

Non-Confidential, Unrestricted Access

Contents

Chapter 16 Cycle Timings and Interlock Behavior
16.1 About cycle timings and interlock behaviorcccci i 16-2
16.2 Register interloCk eXamples ... 16-6
16.3 Data processing iNStrUCLIONSooiiiiiiiiii e 16-7
16.4 QADD, QDADD, QSUB, and QDSUB instructionscccccceevvvrvrireereereeneeeeeeeen. 16-9
16.5 ARMVE media data-proCeSsSiNgGcceiiiieeiiiiieeiii e 16-10
16.6 ARMvV6 Sum of Absolute Differences (SAD)cccccvorieeiiiieiniiie e 16-11
16.7 Multiplies
16.8 Branches
16.9 Processor state updating instructions ... 16-15
16.10 Single load and store iNStrUCHIONSceviiiiiiiiiie e 16-16
16.11 Load and Store Double iNStruCtiONScceeiiiiiiiiiiiiie e 16-19
16.12 Load and Store Multiple INStruCtionsccooiiiiiiiiiiii e 16-21
16.13 RFE and SRS INSrUCIONSc.coiiiiiiiiiieiie e 16-23
16.14 Synchronization iNStrUCtIONSccoiiiiiiiiee e 16-24
16.15 Coprocessor iNStIUCHIONSccccciviiiiiiiiiiie e e 16-25
16.16 SVC, SMC, BKPT, Undefined, and Prefetch Aborted instructions 16-26
T6.17 NO OPEIAtION ...eiieieie ittt et e et nnnee s 16-27
16.18 Thumb iNSIIUCHIONSeiiiiiiiii e 16-28
Chapter 17 AC Characteristics
171 Processor timing diagramscooueiiiiiiiieie e 17-2
17.2 Processor timing parametersoocuviiiiiiiiiie e 17-3
Chapter 18 Introduction to the VFP coprocessor
18.1 About the VFP 11 COPIrOCESSOToiiiiiiiiiiee ittt e a e 18-2
18.2 Y o] o] 1= i o o 1SS 18-3
18.3 CopProCesSOr iNEEIMTACEuiiiiieiiiiee e et 18-4
184 VFP11 COProcessor PIPEIINESoeeviiiiiiiiei ettt e e e e ea e e 18-5
18.5 MoOdES Of OPEIratioNeiiiiiiiiiiie e 18-11
18.6 Short VeCtor INSrUCLIONSoiiiiiiie s 18-13
18.7 Parallel execution of iNStrUCHIONScoeuiiiii e 18-14
18.8 VFP11 treatment of branch instructionsccoooiiiiiiiiiii 18-15
18.9 Writing optimal VFP 11 COAEuiiiiiiiiie e 18-16
18.10 VFP11 revision informationcooouiioiiiie e 18-17
Chapter 19 The VFP Register File
19.1 About the regiSter fileoooi i 19-2
19.2 Register file internal formats ... 19-3
19.3 Decoding the register file ... 19-5
194 Loading operands from ARM11 regiSterscccciiiiiiiiiei e 19-6
19.5 Maintaining consistency in register precisionccccooiiiiiiiii e 19-8
19.6 Data transfer between memory and VFP11 registersccccoocoviiieiiieeeiceeeee. 19-9
19.7 Access to register banks in CDP operationscccccceeeviiiiiieiicciiiee e 19-10
Chapter 20 VFP Programmer’s Model
201 About the programmer’'s MOdeloooiiiiiiiiiii e 20-2
20.2 Compliance with the IEEE 754 standardcccccoeciiieeiiciiieee e 20-3
20.3 ARMVSTE COProCesSOr €XtENSIONSccueeeiiiiiiiiieiieee ettt 20-8
20.4 VP11 SyStem regiSters ..o e 20-12
Chapter 21 VFP Instruction Execution
211 About iNStruction €XECULIONooiiiiiie e 21-2
21.2 Serializing INStUCHIONSoiiiiiiee e 21-3
21.3 Interrupting the VFP11 COPrOCESSOXcooiiiiiiiiieeiiiiiieee et e 21-4
21.4 Lo T V1= o [1o To RSP O PP PPPPRPTRIN 21-5
21.5 [F= V2 (o USSP SRTRRR 21-6
21.6 Operation of the SCOreboardscccoiiiiiiiiiiiiiie e 21-7
21.7 Data hazards in full-compliance Modecceeeiiiiiiiiiiiie e 21-13
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. vii

ID012310

Non-Confidential, Unrestricted Access

Chapter 22

Appendix A

Appendix B

21.8
21.9
21.10
21.11

Contents

Data hazards in RUNFast MOdeccooiieiiiiiiiiiieccee e 21-16
RESOUICE hazards ..ot e e e e 21-17
Parallel @XECULIONccooeeeeeee e e e e e e e e e e e e e e e e eaaneaes 21-20
EXECULION tIMING .oeeiiiiiiii e 21-22

VFP Exception Handling

221
22.2
22.3
22.4
22.5
22.6
22.7
22.8
22.9
22.10
2211
22.12

About eXCeption PrOCESSINGcciiriiiiiiieiiieeiti ettt 22-2
Bounced INSTIUCHIONSeeiiiieiii et et e e e 22-3
SUPPOIE COUR ...ttt e e e s e ene e e e aereeenans 22-5
EXCEPtioN PrOCESSING ...coeeiiiiiiieei ittt et e e e et e e e eneeeeee e 22-8
Input Subnormal eXCePLioNcccuviiiiiie e 22-12
Invalid Operation EXCEPIONooiiiiiiiiiie e e 22-13
DiviSion by Zero @XCEPLIONeiiiiiiiiiiieee e 22-15
OVErflOW EXCEPHIONiiiiiiiiiiie et 22-16
UNerflow @XCEPLIONoiiiiiiiiiiee et 22-17
INEXACE EXCEPLION ... ——— 22-18
T o1 =Y Cet= o 1o) 1 22-19
Arithmetic @XCEPLIONSeiiiiiiieeieee e 22-20

Signal Descriptions

A1
A2
A3
A4
A5
A6
AT
A8
A9

(€] o= I3 o o E= 1 - RSP PPRP A-2
Static configuration SIgNalSccooiiiiiiiii A-4
TrustZone internal SIgNalscooiiiiiiiiii e A-5
Interrupt signals, including VIC interfacec.ccccooiiiiiiiiiici e A-6
AXILInterface SIGNaAlSc.oooiiiii e A-7
Coprocessor interface SIgNaAISoeiiiiieiiie e A-12
Debug interface signals, inCluding JTAGc.ooviiiiiiiiiiee e A-14
ETM interface Signals ..ot A-15
TESESIGNAIS ...eeeeeeie e A-16

Summary of ARM1136JF-S and ARM1176JZF-S Processor Differences

B.1 About the differences between the ARM1136JF-S and ARM1176JZF-S processors
B-2
B.2 Summary of diffErENCEScoueiieiieeeee e B-3
Appendix C Revisions
Glossary
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. viii

ID012310

Non-Confidential, Unrestricted Access

List of Tables
ARM1176JZF-S Technical Reference Manual

(01 a= o T=T 011 (o] oY PRSPPI ii

Table 1-1 TCM CONFIGUIALIONS ...t et e e e e et e e e e e ae e e e e esae e e e e eseeeeesnnsreeeas 1-13
Table 1-2 Double-precision VFP OPErationSoceeiiiiiiiiiiieiiee ettt 1-20
Table 1-3 FIUSH-T0-ZEr0 MOAEttt ettt e e e e et e e e e e enneeeeaaenn 1-20
Table 1-4 [07e] 01T [] =1 o] [T o] o] (o] =TSR SURRRR 1-25
Table 1-5 ARM1176JZF-S processor default configurationscccooiieiiiir e 1-25
Table 1-6 Key 10 inStruction Set tablesoeiiiiiiiii e 1-32
Table 1-7 ARM inStruction SEt SUMMAIYccoiiiiiiiiieiiee et e e e e e st e e e e e enreaeeeennes 1-33
Table 1-8 AdAressiNg MOAE 2 ...ttt b et 1-40
Table 1-9 Addressing mode 2P, post-indexed ONlYoooiiiiiiiiii 1-41
Table 1-10 AdAressiNg MOAE 3 ...ttt 1-42
Table 1-11 F e (o {13 T I g To o = TR 1-42
Table 1-12 AdAresSiNg MOAE 5oooiiiieeiee et e e e et e e e e e st e e e e e e s ate e e e e e e nsbeeeeeennnreeeas 1-42
Table 1-13 (@] T=Y =13 o TSP 1-43
Table 1-14 =Y o [P STUPSRRRNY 1-43
Table 1-15 (7] g o 1 1T] g oo o [= - TSP 1-43
Table 1-16 Thumb INStruction Set SUMMAIYooiiiiiiiic et 1-44
Table 2-1 Write access behavior for system control processor registerscccoveeeriiieniceevieescee e 2-9
Table 2-2 Secure Monitor BUS SIGNAIScccuviiiiiiiiee e e e 2-11
Table 2-3 Address types in the processor SYSIEMcooiiiiiiiiiiii e 2-16
Table 2-4 MOAE STTUCTUIE ...ttt et as 2-17
Table 2-5 Register mode identifierso a e 2-19
Table 2-6 GE[3:0] SEEINGS ..ueeiiiieeiie ittt n 2-26
Table 2-7 PSR MOdE Dit VAIUEScooeiiieii ettt e as 2-28
Table 2-8 EXCEPLion eNntry @nd ©Xiteeiiiiiiiiii e e e e e s e 2-37
Table 2-9 [(eT=Y o] 1 o] TN o] 4 o] 1 1= PSRN 2-57
Table 3-1 System control coprocessor register fUNCHONSoocuiiiiiiiiiiiii e 3-3
Table 3-2 Summary of CP15 registers and operationsccoceiiiiiieiiiicie e 3-14
Table 3-3 Summary of CP15 MCRR OPEratioNScceoiiiiiiiiiiiiiiie et 3-19
Table 3-4 Main ID Register bit fUNCHONScoiiiiiie e e 3-20
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. ix

ID012310

Non-Confidential, Unrestricted Access

List of Tables

Table 3-5 Results of access to the Main ID ReGIStEroooiuiiiiiiiieiiee e 3-20
Table 3-6 Cache Type Register bit fUNCHONSc.eoiiiiiiii e e 3-21
Table 3-7 Results of access to the Cache Type REGISIErccooviiiiiiiiiiiie e 3-23
Table 3-8 Example Cache Type Register formatooceooiiiiiiiiiii e 3-23
Table 3-9 TCM Status Register bit fUNCHONScoouiiiiiiiiii e 3-24
Table 3-10 TLB Type Register bit fUNCHONSooiiiii e e 3-25
Table 3-11 Results of access to the TLB Type ReGIStercueeiiiiieiiiiee e 3-25
Table 3-12 Processor Feature Register 0 bit fUNCHONScceiiiiiiiie e 3-26
Table 3-13 Results of access to the Processor Feature Register Occoooiviiiiiiiiiiiiiie e 3-27
Table 3-14 Processor Feature Register 1 bit fUNCONSccoiiiiiiiii e 3-28
Table 3-15 Results of access to the Processor Feature Register 1cccoiiiiiiiiiii e 3-28
Table 3-16 Debug Feature Register 0 bit fUNCHONScoceiiiiiiii e 3-29
Table 3-17 Results of access to the Debug Feature Register 0cccoooiiiiieiiie i 3-29
Table 3-18 Auxiliary Feature Register 0 bit fUNCHONScooiiiiie e 3-30
Table 3-19 Results of access to the Auxiliary Feature Register 0cccccoeoveiiiiiiieiiiiee e 3-30
Table 3-20 Memory Model Feature Register 0 bit funCtionscccoiiiiiiiii 3-31
Table 3-21 Results of access to the Memory Model Feature Register 0cccooveiiiiiiiniiiiniiinece e 3-31
Table 3-22 Memory Model Feature Register 1 bit functions ... 3-32
Table 3-23 Results of access to the Memory Model Feature Register 1cccooveeiiiiiinieeceeeee e 3-33
Table 3-24 Memory Model Feature Register 2 bit functionscccceiiiiiiiiieee e 3-34
Table 3-25 Results of access to the Memory Model Feature Register 2ccccooviviieeiiiiiieeic e 3-35
Table 3-26 Memory Model Feature Register 3 bit funCtionsccccciiiiiiii 3-35
Table 3-27 Results of access to the Memory Model Feature Register 3cccooiiiiiiiniiiiiiiec e 3-36
Table 3-28 Instruction Set Attributes Register 0 bit funCtions ... 3-36
Table 3-29 Results of access to the Instruction Set Attributes Register 0ccoccoveiiiiviiieniie e 3-37
Table 3-30 Instruction Set Attributes Register 1 bit functionsccccciiiii i 3-38
Table 3-31 Results of access to the Instruction Set Attributes Register 1ccccooeiiiiiiiiiiiieee 3-38
Table 3-32 Instruction Set Attributes Register 2 bit funCtionsccccciiiiiii e 3-39
Table 3-33 Results of access to the Instruction Set Attributes Register 2ccccooiiiiiiiiiie 3-40
Table 3-34 Instruction Set Attributes Register 3 bit funCtions ... 3-41
Table 3-35 Results of access to the Instruction Set Attributes Register 3coooiiiiiiiiiieii e 3-41
Table 3-36 Instruction Set Attributes Register 4 bit functionscccciiiii i 3-42
Table 3-37 Results of access to the Instruction Set Attributes Register 4cccoooviiiiiiiiiciceieee 3-43
Table 3-38 Results of access to the Instruction Set Attributes Register 5 ... 3-43
Table 3-39 Control Register bit fUNCHIONSuiiiii e s 3-45
Table 3-40 Results of access to the Control REGISLErcooiiiiiiiiii e 3-47
Table 3-41 Resultant B bit, U bit, and EE Dit VAIUESueiiiiieiiee e 3-48
Table 3-42 Auxiliary Control Register bit fuNCtIONScccoiiiiiiie e 3-49
Table 3-43 Results of access to the Auxiliary Control REGIStercccveiviiiiiiiiiii e 3-50
Table 3-44 Coprocessor Access Control Register bit fUNCtONSoceiiiiiiiiii e 3-51
Table 3-45 Results of access to the Coprocessor Access Control Register ..o, 3-51
Table 3-46 Secure Configuration Register bit fUNCHONSc.cooiiiiiii e 3-52
Table 3-47 Operation of the FW and FIQ DItSc.ooiiiiioiee e 3-53
Table 3-48 Operation of the AW and EA DItScoociiiiiiiiiiie et 3-53
Table 3-49 Secure Debug Enable Register bit fUNCHONScccoviiiiiiiiic e 3-54
Table 3-50 Results of access to the Coprocessor Access Control Registercccovvviiiiiniiiiiiieeiinenn 3-55
Table 3-51 Non-Secure Access Control Register bit fUNClONSccooviiiiiiiii e, 3-56
Table 3-52 Results of access to the Auxiliary Control Register ... 3-57
Table 3-53 Translation Table Base Register 0 bit functionsccooiiiiiiii e 3-58
Table 3-54 Results of access to the Translation Table Base Register 0ccccoceeiiiiiiiiienicee e 3-58
Table 3-55 Translation Table Base Register 1 bit fUNCHONSccccuviiiiiiiiiie e, 3-59
Table 3-56 Results of access to the Translation Table Base Register 1cccccceeviiiiiiiiiiiciee e 3-60
Table 3-57 Translation Table Base Control Register bit functionscccociiiiii i 3-61
Table 3-58 Results of access to the Translation Table Base Control Registerccccccviiiiiiininccinnen. 3-62
Table 3-59 Domain Access Control Register bit fUNCHONSocceeiiiiiiii e 3-63
Table 3-60 Results of access to the Domain Access Control Registerccceiiieiiiiiiiiieeneeeee e 3-63
Table 3-61 Data Fault Status Register bit fUNCHONScoooiiiiiiiiii e 3-64
Table 3-62 Results of access to the Data Fault Status Registercccccveiiiiiiiiie i 3-66
Table 3-63 Instruction Fault Status Register bit fUNCHONS ..o 3-67
Table 3-64 Results of access to the Instruction Fault Status Register ... 3-67
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. X

ID012310

Non-Confidential, Unrestricted Access

List of Tables

Table 3-65 Results of access to the Fault Address RegIStercooouiriiiiiiiieeeee e 3-68
Table 3-66 Results of access to the Instruction Fault Address Registerccccceeeviiiiieiieiiciiiie e 3-69
Table 3-67 Functional bits of ¢7 for Set and INAEXccociiiiiiiiri e 3-72
Table 3-68 Cache size and S parameter dePeNdENCYooocuiiiiiiiiiiii e 3-72
Table 3-69 Functional bits of C7 fOr MVAo 3-73
Table 3-70 Functional bits of €7 for VA format ..o 3-74
Table 3-71 Cache operations for entire CACheoooiiiiiiiii i e 3-74
Table 3-72 Cache operations for SiNGIE INESc..oiiiiie e 3-75
Table 3-73 Cache operations for addreSs raNgEScoicuiiiiie it e et e e raee e 3-76
Table 3-74 Cache Dirty Status Register bit fUNCHONSooiiiiiii 3-78
Table 3-75 Cache operations flush fUNCHONSooiiiiiiii e 3-79
Table 3-76 Flush Branch Target Entry using MVA bit funCtionscccoooiiiiiiiiiii e 3-79
Table 3-77 PA Register for successful translation bit functionscccooooiiiii i 3-80
Table 3-78 PA Register for unsuccessful translation bit functionscccovoiiiiiiiici e, 3-81
Table 3-79 Results of access to the Data Synchronization Barrier operationcccccceeiiiiiiiee e, 3-84
Table 3-80 Results of access to the Data Memory Barrier operationccccceviiiiiiiniieeiniee e 3-85
Table 3-81 Results of access to the Wait For Interrupt operation ... 3-85
Table 3-82 Results of access to the TLB Operations Register ... 3-86
Table 3-83 Instruction and data cache lockdown register bit functionsccoocociviiiniiiice 3-88
Table 3-84 Results of access to the Instruction and Data Cache Lockdown Registercccccccvvviinennnenn. 3-88
Table 3-85 Data TCM Region Register bit fUNCHONScoiiiiiiiiiiei e 3-90
Table 3-86 Results of access to the Data TCM Region Register ..o 3-91
Table 3-87 Instruction TCM Region Register bit funCtions ... 3-92
Table 3-88 Results of access to the Instruction TCM Region Registerocovviiiiiiiiii e 3-93
Table 3-89 Data TCM Non-secure Control Access Register bit functionsccccoviiiiiiiiiniiniiceeen 3-94
Table 3-90 Effects of NS items for data TCM operationcccoeeiiiiiiiiiiie e 3-94
Table 3-91 Instruction TCM Non-secure Control Access Register bit functionsc..ccccovieiiiiiieeens 3-95
Table 3-92 Effects of NS items for instruction TCM operationcccccooiiiiiiiiiiiiiicee e 3-95
Table 3-93 TCM Selection Register bit FUNCHONScoouiiiiiiiiiie e 3-96
Table 3-94 Results of access to the TCM Selection RegiSter ... 3-97
Table 3-95 Cache Behavior Override Register bit funCtionsccccoiviiiiiiiienc e 3-98
Table 3-96 Results of access to the Cache Behavior Override Registercccocieiiiiiiiiiiiiee e 3-98
Table 3-97 TLB Lockdown Register bit fUNCHONScc.uviiiiiiiiiiicc e 3-100
Table 3-98 Results of access to the TLB Lockdown RegiStercocuiiiiiiiiiiiiiiicceec e 3-100
Table 3-99 Primary Region Remap Register bit functions ... 3-102
Table 3-100 Encoding for the remapping of the primary memory typecccoceiiiiiiiiiiniecee e 3-103
Table 3-101 Normal Memory Remap Register bit fUNClioNSccccviiiiiiiiii e 3-103
Table 3-102 Remap encoding for Inner or Outer cacheable attributesc.ccccooiiiiiiiiicie e, 3-104
Table 3-103 Results of access to the memory region remap registersc.ccoccoveeveiiviiiiiie e 3-104
Table 3-104 DMA identification and status register bit functionsccccoiii 3-106
Table 3-105 DMA Identification and Status Register functionscccoiiiiiiii i 3-106
Table 3-106 Results of access to the DMA identification and status registerscccocovveiiiiinincnne. 3-107
Table 3-107 DMA User Accessibility Register bit fUNClONSccccviiiiiiiii e 3-108
Table 3-108 Results of access to the DMA User Accessibility Registerccoocoviiiiiiiiiiiiieieeeeee 3-108
Table 3-109 DMA Channel Number Register bit functionscccooociiiiiiiici e 3-109
Table 3-110 Results of access to the DMA Channel Number Register ... 3-109
Table 3-111 Results of access to the DMA enable registers ..o 3-111
Table 3-112 DMA Control Register bit fUNCHONScuiiiiiiie e 3-112
Table 3-113 Results of access to the DMA Control REGISterccviiiiiiiiiiiiee e 3-113
Table 3-114 Results of access to the DMA Internal Start Address Registerccoccoveviiiiiiciiicee e 3-114
Table 3-115 Results of access to the DMA External Start Address Registerccccovvveeiiiiiiieecccineeen. 3-115
Table 3-116 Results of access to the DMA Internal End Address Registerccccooccievieeiiiiieie i 3-116
Table 3-117 DMA Channel Status Register bit funClioNScoooiiiiiiiii 3-117
Table 3-118 Results of access to the DMA Channel Status Register ..o 3-119
Table 3-119 DMA Context ID Register bit fUNCHONScoouiiiiiiii e 3-120
Table 3-120 Results of access to the DMA Context ID Registerccceiiiiiiiiiiee e 3-120
Table 3-121 Secure or Non-secure Vector Base Address Register bit functionscccccoeeeveeiiiicinenn. 3-121
Table 3-122 Results of access to the Secure or Non-secure Vector Base Address Register 3-122
Table 3-123 Monitor Vector Base Address Register bit functionscccocoiiiiiiiiiii 3-123
Table 3-124 Results of access to the Monitor Vector Base Address Registerccccoecviivieiiiiecnciincnee, 3-123
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. Xi

ID012310

Non-Confidential, Unrestricted Access

List of Tables

Table 3-125 Interrupt Status Register bit fUNCHONSceiiiiiiie e 3-124
Table 3-126 Results of access to the Interrupt Status Registeroocciiiiiiiiiiiiii e, 3-124
Table 3-127 FCSE PID Register bit fUNCHONScccuviiiiiiiii e 3-126
Table 3-128 Results of access to the FCSE PID ReQiISterc..ooiiiiiiiiiiiiiiciee e 3-126
Table 3-129 Context ID Register bit fUNCHONSoouiiiiiiiii e 3-128
Table 3-130 Results of access to the Context ID RegISter ... 3-128
Table 3-131 Results of access to the thread and process ID registersccoccveviiireiiiience e 3-129
Table 3-132 Peripheral Port Memory Remap Register bit functionsccccoooiiiieiiieee e 3-131
Table 3-133 Results of access to the Peripheral Port Remap Registercccooviiiiiiiiiiiiicieeccieee 3-131
Table 3-134 Secure User and Non-secure Access Validation Control Register bit functions 3-132
Table 3-135 Results of access to the Secure User and Non-secure Access Validation Control Register .. 3-133
Table 3-136 Performance Monitor Control Register bit functionscccociiiiiiii 3-134
Table 3-137 Performance monitoring BVENTScoouiiiiiiieee e eneeee s 3-135
Table 3-138 Results of access to the Performance Monitor Control Registerccccocvvviiieiiineecineeee 3-137
Table 3-139 Results of access to the Cycle Counter Registercocoviiiiiiiiiiiie e 3-138
Table 3-140 Results of access to the Count RegiSter 0cccviiiiiiiiiiiii e 3-139
Table 3-141 Results of access to the Count RegiSter 1 ..o 3-140
Table 3-142 System validation counter register Operationscccccoiieviiiiie i 3-140
Table 3-143 Results of access to the System Validation Counter Registerc..ccccoeeiiiiviiieiiceeeiieeee 3-141
Table 3-144 System Validation Operations Register functionsccccccoeiiiiiii e 3-142
Table 3-145 Results of access to the System Validation Operations Registercccccvevieiiiiiiiieninnenn. 3-143
Table 3-146 System Validation Cache Size Mask Register bit functionscoccccviiiiiiiniies 3-145
Table 3-147 Results of access to the System Validation Cache Size Mask Registercccccocevrniennnen. 3-146
Table 3-148 TLB Lockdown Index Register bit funCtionsccoiiiiiiiiiii e 3-149
Table 3-149 TLB Lockdown VA Register bit fUNCHONScoouiiiiiiieeiieeee e 3-150
Table 3-150 TLB Lockdown PA Register bit fUNCHONScoouiieiiiieeiie e 3-150
Table 3-151 Access permissions APX and AP bit fields encodingccoccoiiieiiiiiiiie e 3-151
Table 3-152 TLB Lockdown Attributes Register bit functionsccccoiiiiiiiiiiii e, 3-151
Table 3-153 Results of access to the TLB lockdown access registersccocvevieeiiiiiinieceniie e 3-152
Table 4-1 Unaligned access handliNgooueiiiiiiiiioiie ettt e e 4-4
Table 4-2 MEMOIY GCCESS tYPES ..ot e e e ettt e e e e ettt e e e s e nneeeeeeaanneeeaeeanns 4-13
Table 4-3 Unalignment fault occurrence when access behavior is architecturally unpredictable 4-14
Table 4-4 Legacy endianness USING CP 15 CT ..ot e e 4-17
Table 4-5 Mixed-endian CoONfIGQUIrAtioNc.ooiiiiiiiii s 4-19
Table 4-6 B bit, U bit, and EE bit SEttiNgSooiiiiiiiie e 4-19
Table 6-1 Access permission bit @NCOAINGoiiiiiii e 6-12
Table 6-2 TEX field, and C and B bit encodings used in page table formatscccccoooiiiiiiiiineninnens 6-15
Table 6-3 (7= Tod o 1= o Yo o3V o1 (OSSR 6-16
Table 6-4 Inner and Outer cache policy implementation optionsccccciiiiiiiiiiiie e 6-16
Table 6-5 Effect of remapping memory with TEX remap = 1oooiiiiiiii e 6-17
Table 6-6 Values that remap the shareable attributecccoii 6-18
Table 6-7 Primary region type €NCOINGooii it a e e e e ea e 6-18
Table 6-8 Inner and outer region remap €NCOAINGoeiiiiiiiiiiiie i e e e et e e e e eaee e e e e e nnees 6-18
Table 6-9 MemOory attribDULES ...t a e 6-20
Table 6-10 Memory region backwards compatibility ... 6-26
Table 6-11 Fault Status Register @NCOAINGcooiiiiiiiii e 6-34
Table 6-12 SUMMArY OF @DOMTS ..o et e 6-35
Table 6-13 Translation table SIZec.ooo i e 6-43
Table 6-14 Access types from first-level descriptor bit values ... 6-45
Table 6-15 Access types from second-level descriptor bit valuesccccoiiiiiiiiice 6-47
Table 6-16 CP15 register fUNCHONScooiiiiiiiee e e e e e e e saae e e e anreeee s 6-53
Table 6-17 CP14 register fUNCHIONScooiiiieiee e e e e e e e e e e anneeee s 6-54
Table 7-1 TCM CONFIGUIALIONS ...ttt et eer e e e at e e nanees 7-7
Table 7-2 ACCESS t0 NON-SECUME TCM ..ot e e 7-8
Table 7-3 ACCESS 10 SECUIE TOM ...ttt e sr et 7-8
Table 7-4 Summary of data accesses to TCM and Cachesccccoooieeiiiiiiiiie e 7-14
Table 7-5 Summary of instruction accesses to TCM and Cachesccccceeeviiiiiieicciiiiee e 7-15
Table 8-1 AXI parameters for the level 2 interconnect interfacesccccovvveeeieiiiiiii e, 8-3
Table 8-2 AXLEN[3:0] €NCOAING ..eiiitiiiitiie ittt b et e e rat e e ee e 8-10
Table 8-3 AXSIZE[2:0] ENCOTINGuveieiiiiietee ettt et e bt e b e e 8-11
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. Xii

ID012310

Non-Confidential, Unrestricted Access

List of Tables

Table 8-4 AXBURST[1:0] ENCOTING ...eeieiiiiieiiiieiieeetiee ettt e st ee e ettt e et e e sme e e st e e sneeesnneeeaseeeeaneeeesneesnneeeenns 8-11
Table 8-5 PV (@107 (0] =T g TooTe 1 0o [R OO PRSI 8-11
Table 8-6 AXCACHE[3:0] €NCOTINGcvtiiiei ettt e e e et e e e et e e e e e st e e e e e s easaeeesnsreeeas 8-12
Table 8-7 AXPROTI[2:0] €NCOAING ...veeeiuiiieiiiie ittt ettt et rb et e et e s eae e e nab et e e 8-12
Table 8-8 AXSIDEBANDI4:1] €NCOTINGviiiiiiiiiiiieeeiie et etee ettt et e e e st eessseeessaeeesnbeeesneeesseeeseeeanns 8-13
Table 8-9 ARSIDEBANDI[4:1] €NCOTING ...eeiuteieitieeeiieeeeiiie e steie e sttt eesteeesaeeeateeesnseeesnaeeanseeeesneeeesnseaeaeeanns 8-13
Table 8-10 AXI signals for Cacheable fEIChEScocuiiiiiii e 8-14
Table 8-11 AXI signals for Noncacheable fetChesccooiiiiiiii e 8-14
Table 8-12 Linefill behavior on the AXIINEEITACEuuviviiiiiiiiiieie e 8-15
Table 8-13 N [o]gTor=Tet a oY= o LN I DT = J R 8-16
Table 8-14 [N [o]gToz= Tt g oY= o] LT I DT o 8-16
Table 8-15 Noncacheable LDR Or LDM ...ttt e e e e e e e e e e e e e e eneeeneens 8-17
Table 8-16 Noncacheable LDRD Or LDM2ttt e e e e e e e e e e e e e eeennanes 8-17
Table 8-17 Noncacheable LDRD 0r LDM2 from WOIA 7veeeiiieieeeeeeeeee et ee e e e e 8-18
Table 8-18 Noncacheable LDM3, Strongly Ordered or DeviCe MEMOTYcccueieeeeeiiiieeeeeeiiieeeeeeeiveeeeenn 8-18
Table 8-19 Noncacheable LDM3, Noncacheable memory or cache disabledccccccooiiiiiiiiiiiiinnn. 8-18
Table 8-20 Noncacheable LDM3 from WOId 6, OF 7ooiiieieeeeeeeeee e et e e e e e e e e e eeeaaees 8-18
Table 8-21 Noncacheable LDM4, Strongly Ordered or Device MemOrycccevvieinieienieeesiiee e 8-19
Table 8-22 Noncacheable LDM4, Noncacheable memory or cache disabledccccoiiiiiiiiiiin. 8-19
Table 8-23 Noncacheable LDM4 from WOId 5, 6, OF 7ooo oo e e e e 8-19
Table 8-24 Noncacheable LDM5, Strongly Ordered or Device MEMOTYccccueieeeeeiiiieeeeeeiiieeee e eireeeeenn 8-20
Table 8-25 Noncacheable LDM5, Noncacheable memory or cache disabledccccccoiiiiiiiiiiieiinenn. 8-20
Table 8-26 Noncacheable LDM5 from WOord 4, 5, 6, OF 7cooooiieeeeeeeee et eeaaeeees 8-20
Table 8-27 Noncacheable LDMG6, Strongly Ordered or Device MemOrycccevveeiiieeeriieeesiiee e 8-20
Table 8-28 Noncacheable LDM6, Noncacheable memory or cache disabledccccoiiiiiiiiin. 8-21
Table 8-29 Noncacheable LDM®G from Word 3, 4, 5, 6, OF 7 ..o 8-21
Table 8-30 Noncacheable LDM7, Strongly Ordered or DeviCe MEMOTYcccuviieeeeiiiiieeeeeeiiieeeeeeeireeeeenn 8-21
Table 8-31 Noncacheable LDM7, Noncacheable memory or cache disabledccccccoiiiiiiiiiieiinen. 8-21
Table 8-32 Noncacheable LDM7 from Word 2, 3, 4,5, 6, OF 7 ..ooeuueeeeeeee e aa e 8-21
Table 8-33 Noncacheable LDMB8 from WO Ouueiiiiiiieieeeeeeeeee e e e e e e e e e e e e e e e e e eeeenaeens 8-22
Table 8-34 Noncacheable LDMS8 from word 1, 2, 3, 4,5, 8, OF 7 ..eeeeeeeeeeeeeeeeeeeee e 8-22
Table 8-35 [\ Lolqlor=Tel g [oT=T o] (ST I] 1Y/ SRR 8-22
Table 8-36 [\ [ogTer=Tel o Y= 1 o] (Y I i 0 RN 8-23
Table 8-37 [\ LoTgTor=Tel a Y= 1 o] (ST I 5.1V i 8-23
Table 8-38 [\ LoTgTor=Tel a Y= o] (ST I 5 1Y i 8-24
Table 8-39 [\ Lolglor=Tel a[c¥=T o] (ST I D 1Y i S UR 8-24
Table 8-40 [\ Lolglor=Ted o oY= 1 o] (T I D1V i ORI 8-24
Table 8-41 Noncacheable LDIMIS ...ttt et e e e e e e e e e e ee e eeaeeeeaaees 8-25
Table 8-42 [\ [ogTer=Tel o Y= 1 o] [N M RN 8-25
Table 8-43 [Eo 1L [T TR AT g (ST = F= V] G 8-26
Table 8-44 I [R LTI A 1 (= = 7= Vo] 8-26
Table 8-45 Cacheable Write-Through or Noncacheable STRBcccocoiiiiiiiiiiiic e 8-27
Table 8-46 Cacheable Write-Through or Noncacheable STRHcccoiiiiiiiieiiee e 8-27
Table 8-47 Cacheable Write-Through or Noncacheable STR or STM1cciiiiiiiiiieee e 8-28
Table 8-48 Cacheable Write-Through or Noncacheable STRD or STM2 to words 0, 1, 2, 3,4,5,0r 6 8-29
Table 8-49 Cacheable Write-Through or Noncacheable STM2 to word 7ccceeeviiiiiiiiiieeicee e, 8-29
Table 8-50 Cacheable Write-Through or Noncacheable STM3 to words 0, 1,2, 3,4,0r5ccoceeveinneen.n. 8-29
Table 8-51 Cacheable Write-Through or Noncacheable STM3 to words 6 0r 7ccccevvieeeiiiieniieeennnen. 8-29
Table 8-52 Cacheable Write-Through or Noncacheable STM4 toword 0, 1,2, 3,0r4coooiiiiiiiiiiiienn. 8-30
Table 8-53 Cacheable Write-Through or Noncacheable STM4 to word 5, 6, 0r 7ccccevvviieeiieeeee e 8-30
Table 8-54 Cacheable Write-Through or Noncacheable STM5toword 0, 1,2,0r3 ...cccooooeviieeeeiciieeeee 8-30
Table 8-55 Cacheable Write-Through or Noncacheable STM5 toword 4, 5,6, 0r 7cooeeevieeeeeiciiieee, 8-30
Table 8-56 Cacheable Write-Through or Noncacheable STM6 to word 0, 1,0r2cccoceiveiiiiiieeeeeiee. 8-31
Table 8-57 Cacheable Write-Through or Noncacheable STM6 to word 3,4, 5,6, 0r 7ccoooiieieeiiinenn. 8-31
Table 8-58 Cacheable Write-Through or Noncacheable STM7 to word 0 or 1cooviiiiiiiieiniec e 8-31
Table 8-59 Cacheable Write-Through or Noncacheable STM7 toword 2, 3,4,5,60r7 ...ccccoeeovveeieeeenen. 8-32
Table 8-60 Cacheable Write-Through or Noncacheable STM8 toword 0ccceeeveeiiiiiiiieiicee e, 8-32
Table 8-61 Cacheable Write-Through or Noncacheable STM8 toword 1, 2, 3,4,5,6,0r7 ...cccooeeennneee.. 8-32
Table 8-62 Cacheable Write-Through or Noncacheable STMOcoooiiiiiiiiii e 8-32
Table 8-63 Cacheable Write-Through or Noncacheable STM10ccooiiiiiiiiiieiiee e 8-33
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. Xiii

ID012310

Non-Confidential, Unrestricted Access

List of Tables

Table 8-64 Cacheable Write-Through or Noncacheable STMT1 ... 8-33
Table 8-65 Cacheable Write-Through or Noncacheable STM12cooooiiiiiiiiiie e 8-34
Table 8-66 Cacheable Write-Through or Noncacheable STM13 ... 8-34
Table 8-67 Cacheable Write-Through or Noncacheable STM14 ..ot 8-35
Table 8-68 Cacheable Write-Through or Noncacheable STM15 ... 8-35
Table 8-69 Cacheable Write-Through or Noncacheable STM16cccoociiiiiiieiiiic e 8-36
Table 8-70 Example Peripheral Interface reads and WteSccoociiiiiiiiiiiiiic e 8-37
Table 9-1 RESEE MOAES ...t e e e e ettt e e e e st e e e e e annreeaeeanns 9-10
Table 11-1 COProCesSSOr iNSITUCHIONSiiiiiiiiiie e e e e e e st e e e e st e e e e eeareeeeeesareeaeas 11-3
Table 11-2 Coprocessor CONLIOl SIGNAISeiiiiiiiiie ittt et 11-4
Table 11-3 Pipeline Stage UPateoooiiiiiiiii e 11-7
Table 11-4 Addressing of qUEUE DUFEISo 11-10
Table 11-5 Retirement CONAIIONSoooiiiiiiiee et e e e ee e e eneee 11-20
Table 12-1 RV (O ToT o =T o = =PSSOSR 12-3
Table 13-1 Terms used in register deSCHPLONSccccuiiiiiii e e e 13-5
Table 13-2 CP14 debug regiSter MaPoooeeiiiiie et reee e es 13-5
Table 13-3 Debug ID Register bit field definition ..o 13-7
Table 13-4 Debug Status and Control Register bit field definitions ... 13-8
Table 13-5 Data Transfer Register bit field definitions ..o 13-12
Table 13-6 Vector Catch Register bit field definitionscccoooiiiiiiii e 13-14
Table 13-7 Summary of debug entry and exception conditionscccccviiiiiiiiiie i 13-14
Table 13-8 Processor breakpoint and watchpoint registers ... 13-16
Table 13-9 Breakpoint Value Registers, bit field definition ... 13-17
Table 13-10 Processor Breakpoint Control REGISLErScooiiiiiiiiiiiieee e 13-17
Table 13-11 Breakpoint Control Registers, bit field definitions ..o 13-18
Table 13-12 Meaning of BCR[22:20] DitSceeiiiieiiiie e s e s e et eeseesnneeean 13-19
Table 13-13 Processor Watchpoint Value ReGIStEISoeviiiiiiiiie e 13-20
Table 13-14 Watchpoint Value Registers, bit field definitions ... 13-21
Table 13-15 Processor Watchpoint Control REGISIErsoooiiiiiiiiiiiii e 13-21
Table 13-16 Watchpoint Control Registers, bit field definitions ..., 13-21
Table 13-17 Debug State Cache Control Register bit functionscccooeiiiiiiiini e 13-23
Table 13-18 Debug State MMU Control Register bit fuNCtionNScocciviiiiiiiiee e 13-24
Table 13-19 CP14 debug iNSIIUCHIONSoiiiiiiiiiiie e e e e e et e e e e e e san e e ennsaeeeeeaan 13-26
Table 13-20 Debug iNSruCtion @XECULIONoc.uiiiiiiiiii e s 13-27
Table 13-21 Secure debug DENAVIOTooiiii s 13-28
Table 13-22 Behavior of the processor on debug VENESooiiiiiiiiiiiiic e 13-33
Table 13-23 Setting of CP15 registers on debug eventsccocccioiiiiiieni e 13-34
Table 13-24 Values in the link register after eXCeptionscoccviiiiiiiiii e 13-36
Table 13-25 Read PC value after Debug state entryccooiiiiiiiiiiie e 13-39
Table 13-26 Example memory operation SEQUENCEceeiiiiiieiiiiiiiiie et 13-41
Table 14-1 Supported publiC INSIIUCHONSoiiiiiiii e 14-6
Table 14-2 Scan chain 7 register MAPoooiiie e 14-19
Table 15-1 Instruction interface SIGNAIScceeiiiii e 15-2
Table 15-2 ETMIACTLITT7:0] ettt ettt ettt h et e sb et st et eat e et ebe e enne e e 15-3
Table 15-3 ETMIASECCTLITIO] woeiiiieitieeee ettt ettt ettt et et et seeen e 15-4
Table 15-4 Data address interface Signalscooiiiiiiiiiii s 15-4
Table 15-5 ETIMDACTLLT7Z:0] -eeeetieiie ettt ettt ettt ettt e bt e st ekt eesteen b e e saeeeabeesbeeenteesneesnbeebeeaneeenneeee 15-5
Table 15-6 Data value interface SigNalSc.ooooiiiiiii e 15-6
Table 15-7 ETMDDCTLIBI0] ..teeiuteeteeitieetee ittt esiee ettt et b ettt e bt e bt e sb bt e be e she e e bt e ameeeabeesbbeereenbeenaeeenee 15-6
Table 15-8 ETIMPADWIZ:0] ..ttt ettt et h ettt e ebe e bt e b e en e e e e 15-6
Table 15-9 Coprocessor iNterface SIGNAISeiiiiiiiiee e e e e e st e et eea e 15-7
Table 15-10 ETMCPSECCTL[1:0] fOrMAtceiiiiiee ettt e e et e e e e e ra e e e e e anaeeennnes 15-7
Table 15-11 Other CONNECHIONS ... ettt et as 15-8
Table 16-1 PIPElINE SLAGESot 16-3
Table 16-2 Definition of cycle imiNG terMS ..o s 16-5
Table 16-3 Register interloCk eXamples 16-6
Table 16-4 Data Processing Instruction cycle timing behavior if destination is not PCcccccocvieee. 16-7
Table 16-5 Data Processing Instruction cycle timing behavior if destination is the PCc.ccoccieee. 16-7
Table 16-6 QADD, QDADD, QSUB, and QDSUB instruction cycle timing behaviorccccccevvinnee... 16-9
Table 16-7 ARMvV6 media data-processing instructions cycle timing behaviorc.ccooiiiiiniinnn. 16-10
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. Xiv

ID012310

Non-Confidential, Unrestricted Access

List of Tables

Table 16-8 ARMV6 sum of absolute differences instruction timing behaviorcccccoiviiiiiiiiniin e, 16-11
Table 16-9 EXamPIE INTEHOCKSevviiieeice e e e et e e e e et e e e e e atraeeaeaan 16-11
Table 16-10 Example multiply instruction cycle timing behaviorccccooeiiii i 16-12
Table 16-11 Branch instruction cycle timing behavior ... 16-14
Table 16-12 Processor state updating instructions cycle timing behaviorccccccoiiii, 16-15
Table 16-13 Cycle timing behavior for stores and loads, other than loads to the PCccccooieiiinens 16-16
Table 16-14 Cycle timing behavior for Ioads to the PCcooiiiiii e 16-17
Table 16-15 <addr_md_1cycle> and <addr_md_2cycle> LDR example instruction explanation 16-17
Table 16-16 Load and Store Double instructions cycle timing behaviorccccccooiiiiiiiiiiiieic e 16-19
Table 16-17 <addr_md_1cycle> and <addr_md_2cycle> LDRD example instruction explanation 16-19
Table 16-18 Cycle timing behavior of Load and Store Multiples, other than load multiples including the PC
16-21
Table 16-19 Cycle timing behavior of Load Multiples, where the PC is in the register listccc........ 16-22
Table 16-20 RFE and SRS instructions cycle timing behaviorccccoiiiiiii e 16-23
Table 16-21 Synchronization Instructions cycle timing behaviorccccooiiiiiici e, 16-24
Table 16-22 Coprocessor Instructions cycle timing behavior ..o 16-25
Table 16-23 SVC, BKPT, undefined, prefetch aborted instructions cycle timing behavior 16-26
Table 17-1 GIODAI SIGNAIS ... 17-3
Table 17-2 F =1 T [F= PR 17-3
Table 17-3 (00T o] foTer =TT T o] g1 o o =1 TR 17-5
Table 17-4 ETM interface SIgNalScoociiiiiiiiiiie ettt et e e e e e e e e srea e e e e e nnnnes 17-5
Table 17-5 INEEITUPE SIGNAIS ...t e b e et e e e et e e 17-5
Table 17-6 Debug interface SIGNalSoccoiiiiiii s 17-6
Table 17-7 TESESIGNAIS e 17-6
Table 17-8 Static configuration SIgNAISooiiiiiie e 17-6
Table 17-9 TrustZone internal SIGNAISooi i e 17-7
Table 19-1 VFP11 MCR INSIIUCHIONS ..ottt ettt e et e e st e e snae e anneeeenee 19-6
Table 19-2 VFP11 MRC INSIIUCHIONS ..ottt sttt snae s e 19-6
Table 19-3 VFP11 MCRR INSIIUCIONS ...ttt et 19-6
Table 19-4 VEP11 MRRC INSIUCHIONS ...ttt e e e e e e nneeeeas 19-7
Table 19-5 Single-precision data memory images and byte addreSsesocccvvieeeriie e 19-9
Table 19-6 Double-precision data memory images and byte addressesccccvviiiiiiiiniie i 19-9
Table 19-7 Single-precision three-operand register USAgecocccviiieiiiiiiiie e 19-13
Table 19-8 Single-precision two-operand regisSter USAQEc.oiirueiiiiieeiiiie et 19-13
Table 19-9 Double-precision three-operand regisSter USAgeccoiueiiiriiiiiiee e 19-13
Table 19-10 Double-precision two-operand register USAgeocceviriiieriiieiiiie e 19-13
Table 20-1 Default NaN VAIUESooiiiieei ettt e e et e e s nte e e e e e nnee e e anneeean 20-4
Table 20-2 QNaN and SNaN handlingcooueeiuieiiieee et nre e 20-5
Table 20-3 VP11 SYSIEM MEQISTEIS ...t e e e e e e s ree e e e e nnaaeaeeaanees 20-12
Table 20-4 Accessing VFP11 System registers ... e 20-13
Table 20-5 [ST 1 o1 1= o TP URR 20-14
Table 20-6 Encoding of the Floating-Point Status and Control Registercccocovviiiiiie i, 20-15
Table 20-7 Vector length and stride combinationscoooiiiiii e 20-16
Table 20-8 Encoding of the Floating-Point Exception RegIStercccoeiiiiiiiieiiie e 20-17
Table 20-9 Media and VFP Feature Register 0 bit functionscccccoeoiiiiiiiiie e 20-19
Table 20-10 Media and VFP Feature Register 1 bit fuNCioNScccoiiiiiiiii e 20-20
Table 21-1 Single-precision source register [0CKINGcuiiiiiiiiiiiii e 21-8
Table 21-2 Single-precision source register ClEarNGccociiiiiieiiiiie e 21-9
Table 21-3 Double-precision source register l0CKINGcooiiiiiiiiiiiiiee e 21-10
Table 21-4 Double-precision source register clearing for one-cycle instructionscccccovivieeiiennnee. 21-11
Table 21-5 Double-precision source register clearing for two-cycle instructionscccccovvieeiicinnnenn. 21-11
Table 21-6 FCMPS-FMSTAT RAW hQZardcccceiiiiiiiiii ettt 21-13
Table 21-7 FLDM-FADDS RAW hQZaIdcoeoiiitiiiiieiie ittt ettt tee st stee e e e et e sneesnneeneas 21-14
Table 21-8 FLDM-short vector FADDS RAW hazardcoccuiiiiiiiiiiee et 21-14
Table 21-9 FMULS-FADDS RAW hZaAIdccccoiitiiiiieiie ittt st 21-15
Table 21-10 Short vector FMULS-FLDMS WAR hazardccccoiiiiiiiiie e e e 21-15
Table 21-11 Short vector FMULS-FLDMS WAR hazard in RunFast modec.cccocciiiiiiiniiiiieeeees 21-16
Table 21-12 FLDM-FLDS-FADDS resource hazardcccccceeoiiiieiiieeeee e 21-18
Table 21-13 FLDM-short vector FMULS resource hazardccceeoiiiiiriiiiiiiee e 21-18
Table 21-14 Short vector FDIVS-FADDS resource hazardcocceoiiiieiiieeiiieeciieee e 21-19
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. XV

ID012310

Non-Confidential, Unrestricted Access

List of Tables

Table 21-15 Parallel execution in all three PIPElNESuvviiiiiiiiiiiii e 21-21
Table 21-16 Throughput and latency cycle counts for VFP11 instructionscccccveviiiiiieniiiiciieee e 21-22
Table 22-1 Exceptional short vector FMULD followed by load/store instructionsccccccveeeiiiiiieneenn, 22-9
Table 22-2 Exceptional short vector FADDS with a FADDS in the pretrigger slotccccciiiiiiiiennne. 22-10
Table 22-3 Exceptional short vector FADDD with an FMACS trigger instructionccccoooeiiiiiiniinenee 22-11
Table 22-4 Possible Invalid Operation €XCEePLiONScccuiiiiiiiiiiiiic e 22-13
Table 22-5 Default results for invalid conversion iNPULSccueiiiiiiiiiiicc e 22-14
Table 22-6 Rounding mode oVErflOW FESUIESoeiiiiiieiieeee et 22-16
Table 22-7 LSA and USA determinationoooiiiiiiiiiiiie et 22-20
Table 22-8 FADD family bounce thresholdsoooiiiiiiiiii e 22-21
Table 22-9 FMUL family bounce thresholdsooouiiiiiiiii e 22-22
Table 22-10 FDIV bounce threShoIds ...t e e e e a e e 22-23
Table 22-11 FCVTSD bounce thresholdscooiiiiiiiiie e e 22-24
Table 22-12 Single-precision float-to-integer bounce thresholds and stored resultsccccoveceeiiiennns 22-25
Table 22-13 Double-precision float-to-integer bounce thresholds and stored resultscccccceeeeevneenn. 22-26
Table A-1 GIODAI SIGNAIS ... e A-2
Table A-2 Static configuration SIgNAISoooiiiiii s A-4
Table A-3 TrustZone iNternal SIgNAISc.eiiiiiiii e e A-5
Table A-4 [0 Ty (U o =3 T = SRR A-6
Table A-5 Port signal NAME SUFIXESeeuiiiiiieiie e e e e e e et e e eneeesneeeeaneeeenns A-7
Table A-6 Instruction read port AXI signal implementation ..o A-8
Table A-7 Data port AXI signal implementationcoooiiiiiiiii e A-9
Table A-8 Peripheral port AXI signal implementationc.ooiiiiii e A-10
Table A-9 DIMA POt SIGNAIS ...ttt s A-11
Table A-10 (0701 1R (ol oTe] o]y ot otsTo] T o a1 - A-12
Table A-11 COpProcessor 10 COME SIGNAISeiiiiiieeiiee ettt et e e e e e e ree e e e snee e e enneeeaeeeeneeeennneas A-12
Table A-12 Debug interface SIGNAIScoooiiiiiiiiie e a e e e e aans A-14
Table A-13 ETM Interface Signalscooiiiiiiiiie e A-15
Table A-14 TESESIGNAIS .ttt A-16
Table B-1 TCM for ARMT176JZF-S PrOCESSOISeviiiieiiiiiie ettt ettt B-6
Table B-2 CP15 c15 features common to ARM1136JF-S and ARM1176JZF-S processorsc.......... B-8
Table B-3 CP15 c15 only found in ARM1136JF-S PrOCESSOISeoveiiiiieiiieiiieeeiieeeeee e eeeeeeee e B-9
Table C-1 Differences between issue G and iSSUE Hcooiiiiiiiiiiiiii e C-1
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. XVi

ID012310

Non-Confidential, Unrestricted Access

List of Figures
ARM1176JZF-S Technical Reference Manual

Key to timing diagram CONVENTIONS ... e e e e e e e e e e XXiv

Figure 1-1 ARM1176JZF-S processor block diagramc..ooiiiiiiiiiiie e 1-8
Figure 1-2 ARM1176JZF-S PIPEINE STAGES ..ooiiiiiiiiiiie e 1-26
Figure 1-3 Typical operations in PIPeling StAGESooiiiiiiiiieiiie e 1-28
Figure 1-4 Typical ALU OPEIatioNoeeiiiieiiiee ettt e e ettt e e e et e e e e e e neaeaeeesnnneeeens 1-28
Figure 1-5 Typical MUIIPlY OPEratioNcooiiiiiiee e e e e e s 1-29
Figure 1-6 Progression of an LDR/STR OPErationcc.cooiiiiiiiiiie ittt et e e 1-30
Figure 1-7 Progression of an LDM/STM OPErationc..eeiiiiiiiiiiei ettt et evaae e 1-30
Figure 1-8 Progression of an LDR that MiSSEScociiiiiiiiiii e 1-31
Figure 2-1 Secure and NON-SECUIE WOTIAScoiiiiiiiiii it 2-3
Figure 2-2 Memory in the Secure and NON-SECUIre WOIIASccocviiiiiiiiiiiiiiee e 2-6
Figure 2-3 Memory partition in the Secure and Non-secure Worldsccccoociviriiieiiin e 2-7
Figure 2-4 Big-endian addresses of bytes Within WOrdsccccooiiiiiiiii i 2-15
Figure 2-5 Little-endian addresses of bytes within Wordscccooiiiiiiiiei i 2-15
Figure 2-6 Register organization in ARM Stateccooiiiiiiiiiiii e 2-20
Figure 2-7 Processor core register set showing banked registerscccoooiiiiiiiii 2-21
Figure 2-8 Register organization in Thumb state ... 2-22
Figure 2-9 ARM state and Thumb state registers relationship ..o, 2-23
Figure 2-10 Program Status FEQISIENeeeiiiiiiie e e e e e e e e e e e 2-24
Figure 2-11 LDREXB INSIIUCLIONeiiiiiie ettt e e et e e e e e e e e e s s b e e e e e e senrnaeeaeeanns 2-30
Figure 2-12 STREXB INSITUCHONSeiitiieiiiie ettt sttt e et e e e as 2-30
Figure 2-13 LDREXH INSIIUCHION ...ttt 2-31
Figure 2-14 STREXH INSIIUCHION ..ot se e es 2-32
Figure 2-15 LDREXD INSTFUCHION ..ottt et e e et e e e e et e e e e enne e e e aannneeeaeeanns 2-33
Figure 2-16 STREXD INSITUCHONiiiiiiiiiiiii ettt e e e e et e e e e e b ae e e e e s enbe e e e e e sneaeeesnseeeens 2-33
Figure 2-17 CLREX INSIIUCHION ...ttt et e e e e ettt e e e e st e e e e e s stbreeeeeenbeeeaeeesnneeaeas 2-34
Figure 2-18 NOP-compatible hint iNSITUCIONooiiiiiiiii e 2-34
Figure 3-1 System control and configuration regisSters ..o 3-5
Figure 3-2 MMU control and configuration regiStersoocuiiiiiiiiiiiii e 3-7
Figure 3-3 Cache control and configuration regiSterscceeiiiiieiie e 3-8
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. XVii

ID012310

Non-Confidential, Unrestricted Access

List of Figures

Figure 3-4 TCM control and configuration registerscooiieirie i 3-8
Figure 3-5 Cache Master Valid REGISIEISocoiiiiiiie ettt s e e e e e e trae e e e e e sneeeaeenes 3-9
Figure 3-6 DMA control and configuration regiStersooccuiiieiiiiiiie e 3-9
Figure 3-7 System performance MONItOr FEGISErScooiiiiiiiiii e 3-10
Figure 3-8 System validation regiSters ... s 3-11
Figure 3-9 CP15 MRC and MCR Dit pattern ..o 3-12
Figure 3-10 Main ID RegiSter fOrMatccciiiiiee et e et e e e e s ee e enneeas 3-20
Figure 3-11 Cache Type Register fOrmMatcc.oooiiiiiie e e 3-21
Figure 3-12 TCM Status Register fOrmatccuiiiiiiiiie e e 3-24
Figure 3-13 TLB Type Register fOrmatc.ooo i e 3-25
Figure 3-14 Processor Feature Register 0 formatoooiiiiiiiiiei e 3-26
Figure 3-15 Processor Feature Register 1 formatoooiiiiiiiiii e 3-28
Figure 3-16 Debug Feature Register 0 formatccooooiiiiiiiei e 3-29
Figure 3-17 Memory Model Feature Register 0 formatccoiiiiiiiiiiie e 3-31
Figure 3-18 Memory Model Feature Register 1 formatcoccoviiiiiiiiiiiie e 3-32
Figure 3-19 Memory Model Feature Register 2 format ..o 3-34
Figure 3-20 Memory Model Feature Register 3 format ..o 3-35
Figure 3-21 Instruction Set Attributes Register 0 format ... 3-36
Figure 3-22 Instruction Set Attributes Register 1 formatcoooiiiiiii e 3-38
Figure 3-23 Instruction Set Attributes Register 2 formatccoooiiiiiii e 3-39
Figure 3-24 Instruction Set Attributes Register 3 formatccooeiiiiiiiiiii e 3-40
Figure 3-25 Instruction Set Attributes Register 4 format ... 3-42
Figure 3-26 Control ReGIStEr TOIMALoiiiiiii e 3-44
Figure 3-27 Auxiliary Control Register formatccoooiiiiiiii e 3-49
Figure 3-28 Coprocessor Access Control Register formatcoocevoiiiiiioiiiieee e 3-51
Figure 3-29 Secure Configuration Register formatcccooiiiiiiiiie e 3-52
Figure 3-30 Secure Debug Enable Register formatccccooiiiiiiiii i 3-54
Figure 3-31 Non-Secure Access Control Register formatcccoooiiiiiii e 3-56
Figure 3-32 Translation Table Base Register 0 formatccooouiiiiiiiiiiii e 3-57
Figure 3-33 Translation Table Base Register 1 format ..o 3-59
Figure 3-34 Translation Table Base Control Register formatccccoo i 3-61
Figure 3-35 Domain Access Control Register formatcccooiiiieiiiie e 3-63
Figure 3-36 Data Fault Status Register formatooooiiiiiiiii e 3-64
Figure 3-37 Instruction Fault Status Register formatoocoiiiiiiiii e 3-66
Figure 3-38 (07 Tel g T o] o1=T =Y o] o I O PPV P TP 3-70
Figure 3-39 Cache operations with MCRR INStrUCHIONSooiiiiiiiii e 3-71
Figure 3-40 c7 format for Set and INAEXoiiiiiiei e e 3-72
Figure 3-41 Lo A (] 5 44 T= 1 8 1Y OSSR 3-73
Figure 3-42 FOrmat Of C7 fOF VA et e et e e e et e e e e st r e e e e s eabeaessasbeeeeeeanees 3-73
Figure 3-43 Cache Dirty Status Register format ..o 3-78
Figure 3-44 c7 format for Flush Branch Target Entry using MVA ... 3-79
Figure 3-45 PA Register format for successful translationcccccoeii 3-80
Figure 3-46 PA Register format for aborted translationccoooiiiriiiii 3-80
Figure 3-47 TLB Operations Register MVA and ASID formatccccoeioiieiiiee e 3-87
Figure 3-48 TLB Operations Register ASID fOrmatcccooiiiiiiiiiiiiiec et 3-87
Figure 3-49 Instruction and data cache lockdown register formatsccccoiiiiiii e 3-88
Figure 3-50 Data TCM Region Register format ... 3-90
Figure 3-51 Instruction TCM Region Register formatcooviiiiiiiiiic e 3-91
Figure 3-52 Data TCM Non-secure Control Access Register formatccccoveeiiiiiiiieee 3-93
Figure 3-53 Instruction TCM Non-secure Control Access Register formatccccovoiiiiiiiiiiiiiiiee. 3-95
Figure 3-54 TCM Selection Register formatooouiiiii oo 3-96
Figure 3-55 Cache Behavior Override Register formatccccooouiiiiiiiiiiie e 3-97
Figure 3-56 TLB Lockdown Register fOrmatoooiiiiiiiiiie e e 3-100
Figure 3-57 Primary Region Remap Register formatcoociiiiiiii e 3-102
Figure 3-58 Normal Memory Remap Register formatcoooiiiiiiiii e 3-103
Figure 3-59 DMA identification and status registers formatccoooiiiiiii i 3-106
Figure 3-60 DMA User Accessibility Register formatcooiiiiiiiiiiii e 3-108
Figure 3-61 DMA Channel Number Register formatcooooiiiiiiiiiiiiicc e 3-109
Figure 3-62 DMA Control Register fOrmatoocuiiiiiiiiii e 3-112
Figure 3-63 DMA Channel Status Register format ..o 3-117
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. xviii

ID012310

Non-Confidential, Unrestricted Access

List of Figures

Figure 3-64 DMA Context ID Register formatooooeoiiiieeee e 3-120
Figure 3-65 Secure or Non-secure Vector Base Address Register formatccccoeevvieeiiiiiiien e, 3-121
Figure 3-66 Monitor Vector Base Address Register formatcooooviiiiiieiieiiiieec e 3-122
Figure 3-67 Interrupt Status Register format ..o 3-124
Figure 3-68 FCSE PID RegISter FOrmatcooiiiiiiiiiiiiei et 3-126
Figure 3-69 Address mapping with the FCSE PID RegiStercoooiiiiiiiiiiiee e 3-127
Figure 3-70 Context ID Register FOrMatoooiiiiiiiieee e e e 3-128
Figure 3-71 Peripheral Port Memory Remap Register formatcccoooiiiiiiii e 3-130
Figure 3-72 Secure User and Non-secure Access Validation Control Register formatccccceeeennnee. 3-132
Figure 3-73 Performance Monitor Control Register format ... 3-133
Figure 3-74 System Validation Counter Register format for external debug request counter 3-141
Figure 3-75 System Validation Cache Size Mask Register formatcccooiiiiiiiiiiii e 3-145
Figure 3-76 TLB Lockdown Index Register formatcccooooiieiiiiiiii e 3-149
Figure 3-77 TLB Lockdown VA Register formatcooooiieiiiireiieeeie e e 3-149
Figure 3-78 TLB Lockdown PA Register formatccueiiiiiiiiiiicecie et 3-150
Figure 3-79 TLB Lockdown Attributes Register format ... 3-151
Figure 4-1 Load UNSIGNEA DYLE ... 4-6
Figure 4-2 Load SIgNEA DYLE ... e 4-6
Figure 4-3 5 0] =)Y (= S 4-7
Figure 4-4 Load unsigned halfword, litle-endianoooiiiioi e 4-7
Figure 4-5 Load unsigned halfword, big-endiancccooiiiiiiiii i 4-8
Figure 4-6 Load signed halfword, lite-endian ..o 4-8
Figure 4-7 Load signed halfword, Dig-eNndian ... 4-9
Figure 4-8 Store halfword, lIHIe-eNdianeeeiiiiiieee e e 4-9
Figure 4-9 Store halfword, DIg-NdIaN ... e 4-10
Figure 4-10 (I Y=To IRV Yo o I 111 [T (o [= o TR 4-10
Figure 4-11 Load word, bIig-€NIiaNccooiiiiiii e a e aa e 4-11
Figure 4-12 Store word, lItHe-eNdIanoooviiiiee e e e e aanaaes 4-11
Figure 4-13 Store Word, DIg-ENAIANooiiiii e 4-12
Figure 6-1 Memory ordering reStriClONSoiiiiiiiiii e 6-24
Figure 6-2 Translation table managed TLB fault checking sequence part 1occceiiiiiiiiin e 6-30
Figure 6-3 Translation table managed TLB fault checking sequence part 2ccccoeiiieiiiieiiee e 6-31
Figure 6-4 Backwards-compatible first-level descriptor formatccccceieiiiiiiie e 6-37
Figure 6-5 Backwards-compatible second-level descriptor formatcccooeiiiiiinii e 6-38
Figure 6-6 Backwards-compatible section, supersection, and page translationccccccceviiiiniiininen. 6-38
Figure 6-7 ARMVE first-level descriptor formats with subpages disabledcccoooiiiiiiiiiiiee 6-39
Figure 6-8 ARMV6 second-level descriptor fOrmatooocieeiiioeiie e 6-40
Figure 6-9 ARMV6 section, supersection, and page translation ..o 6-41
Figure 6-10 Creating a first-level descriptor @ddreSScocvviiiiiiiiiiii e 6-44
Figure 6-11 Translation for a 1MB section, ARMV6 formatooooiimiiiiiiiiiieieeeeeeeeee e 6-46
Figure 6-12 Translation for a 1MB section, backwards-compatible formatccccciiie 6-46
Figure 6-13 Generating a second-level page table addressccccoviiiiiiiiiiece 6-47
Figure 6-14 Large page table walk, ARMVB fOrmatcccooiiiiiiiiiieeee e 6-48
Figure 6-15 Large page table walk, backwards-compatible formatcccooiiiiiiiiii e 6-49
Figure 6-16 4KB small page or 1KB small subpage translations, backwards-compatible format 6-50
Figure 6-17 4KB extended small page translations, ARMV6 formatcccoeiiiiiiiiiniiiiee e 6-51
Figure 6-18 4KB extended small page or 1KB extended small subpage translations,
backwards-compatible format ... e 6-52
Figure 7-1 Level one cache block diagram ..ot 7-4
Figure 8-1 Level two interconneCt iNtEIfACESeviiiiieiiie e 8-2
Figure 8-2 Channel architeCture Of FEAAScoiii i e e e e e e a e e 8-8
Figure 8-3 Channel architeCture Of WIHEEScoiiiiiiiiee e e e e e e 8-8
Figure 8-4 Swizzling of data and strobes in BE-32 big-endian configurationccccccoviiiiiiinincnen. 8-38
Figure 9-1 Processor clocks With NO TEMooiiiiiii e e 9-3
Figure 9-2 Read latency With NO TEM ... e e e e e 9-4
Figure 9-3 Processor CloCKS With TEM ... ettt e e et e e e e 9-6
Figure 9-4 Processor synchronization With IEM ... 9-6
Figure 9-5 Read latency With IEMouee e e e e e e e e e e e e s e e nnnes 9-8
Figure 9-6 POWET-0N TESEL ...ttt et ettt e st e ettt e e nabe e e abee e 9-10
Figure 10-1 IEM STFUCTUIE ..ttt ettt st e st e e et e e e nnreeeanreeena 10-8
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. XiX

ID012310

Non-Confidential, Unrestricted Access

List of Figures

Figure 11-1 Core and coproCesSor PIPEINEScoiiiiiiuiiie et e e e e s e e e et ee e e e eeneaeeeans 11-5
Figure 11-2 Coprocessor PIPeliNng aNd QUEUESuviiiiiiiiiiiie ettt e e e e e e et e e e e e sereeaeas 11-5
Figure 11-3 [07e] o] (eTot =Tt Yo ol o] o =] 13 L= NPT UER P 11-6
Figure 11-4 TOKEN QUEUE DUFEIS ..ot 11-9
Figure 11-5 Queue reading and WIINGoooveeiiiiieie et 11-10
Figure 11-6 QUEUE FIUSRING ... e e 11-11
Figure 11-7 INSTIUCHION QUEUE ...ttt e et e e e et e e s e et e e e e e e sneeeeeeeannnee 11-12
Figure 11-8 Coprocessor data tranSTErooiiiiiiie e 11-15
Figure 11-9 Instruction iteration fOr I0AAScccuiiiiii i 11-16
Figure 11-10 Load data BUFfEIINGeeeiiee e 11-17
Figure 12-1 Connection of @ VIC t0 the PrOCESSOIcc.uiiiiiiiiiiiic e 12-3
Figure 12-2 VIC port tIMING EXAMPIE ...cco.uiiiiiiieiie ettt e sr e 12-5
Figure 12-3 INterrupt €Ntry SEQUENCEcooiiiiiie ettt e e et e e e e e e e e e 12-7
Figure 13-1 Typical dEDUG SYSEM ...ttt e e e e e e e e nneeeee s 13-2
Figure 13-2 Debug ID Register fOrmMatooiiiiiiiiiiiee et e a e 13-6
Figure 13-3 Debug Status and Control Register formatoooiiiiiiiiii e 13-8
Figure 13-4 DTR FOMMAE ..ottt st e s bt e eabe e e st e e saneee s 13-12
Figure 13-5 Vector Catch Register formatoooiiiiiii e 13-13
Figure 13-6 Breakpoint Control Registers, formatoouiroiiii e 13-17
Figure 13-7 Watchpoint Control Registers, formatccooiiioiiiie e 13-21
Figure 14-1 JTAG DBGTAP state machine diagramcoooouiiii i 14-2
Figure 14-2 RealView ICE clock Synchronization ..o 14-3
Figure 14-3 Bypass register Dit OFAErooo i 14-8
Figure 14-4 Device ID code register bit Order ..o 14-9
Figure 14-5 Instruction register Dit OFAero 14-9
Figure 14-6 Scan chain select register bit Orderoooiiiiiie e 14-10
Figure 14-7 S Tor= 1ol el o F= 1 o WO o) 3] o L= SRR OPP 14-11
Figure 14-8 Scan Chain 1 DIt OFAEToiiiiiiii et e 14-11
Figure 14-9 SCan Chain 4 DIt OFAETooiiiiiiiii ettt e e e 14-13
Figure 14-10 Scan chain 5 bit order, EXTEST S€IECIEAuueeeiiiiieeeeeeeeee e 14-15
Figure 14-11 Scan chain 5 bit order, INTEST SEIECLEAieeiiiieeeeeeeeeeee e 14-15
Figure 14-12 STz Vg Ied o F= 11 T G o1 e o [T 14-17
Figure 14-13 Scan Chain 7 DIt OFAEr ...t e e e e e et ae e e earaeeaeeeas 14-18
Figure 14-14 Behavior of the ITRsel IR INSIFUCHONc..eiiiiiiiiie e 14-22
Figure 15-1 ETMCPADDRESS fOMMAL ...cueiitiiiiiiiieeitie ettt ettt sttt e b e et et e sneenneeenee 15-7
Figure 18-1 FMAGC PIPEIINE ..ttt e e a e s e st e e bt e nre e e nnneeeabeeena 18-6
Figure 18-2 DS PIPEIINE oot earareaaeeaannees 18-8
Figure 18-3 LS PIPEIINE ..ot e et e e e e e e e e e e e e e e e ar e e e e earaaeaaeeaannees 18-9
Figure 19-1 Single-precision data formatoooiiiiiiiiie e 19-3
Figure 19-2 Double-precision data format ..o 19-4
Figure 19-3 REGISIEr fil€ @CCESSeeiiiiiie it 19-5
Figure 19-4 REGISIEr DANKS ...ttt e et e e et e e e e e e ea e e e anaes 19-10
Figure 20-1 FMDRR inStruction fOrMatccciiiiiieiie et eee e sneee s 20-8
Figure 20-2 FMRRD insStruction fOrMatcooiiiiiiieeie e e et eee e eneeeean 20-9
Figure 20-3 FMSRR INStruCtion fOrMatooiiiiiiiii ettt e et e e eetae e e e enees 20-10
Figure 20-4 FMRRS inStruction fOrMALooueiiiiiiiii et 20-11
Figure 20-5 Floating-Point System ID REGISIErooiiiiiiiiii s 20-13
Figure 20-6 Floating-Point Status and Control REGISterc.oiiiiiiiiiiie e 20-14
Figure 20-7 Floating-Point EXCeption REGISTENoiiiiiiie e 20-17
Figure 20-8 Media and VFP Feature Register 0 formatcoooiiiiiiiiei e 20-19
Figure 20-9 Media and VFP Feature Register 1 formatcccoveiiiiiiiiiie e 20-20
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. XX

ID012310

Non-Confidential, Unrestricted Access

Preface

This preface introduces the ARM1176JZF-S™ Technical Reference Manual (TRM). It contains the
following sections:

. About this book on page xxii
. Feedback on page xxvi.

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. XXi
ID012310 Non-Confidential, Unrestricted Access

Preface

About this book

This book is for ARM1176JZF-S processor. In this manual the generic term processor means
the ARM1176JZF-S processor.

Product revision status

The rnpn identifier indicates the revision status of the product described in this book, where:
rn Identifies the major revision of the product.
pn Identifies the minor revision or modification status of the product.

Intended audience

This document has been written for hardware and software engineers implementing the
processor system designs. It provides information to enable designers to integrate the processor
into a target system as quickly as possible.

Using this book
This book is organized into the following chapters:

Chapter 1 Introduction
Read this for an introduction to the processor and descriptions of the major
functional blocks.

Chapter 2 Programmer’s Model

Read this for a description of the processor registers and programming details.

Chapter 3 System Control Coprocessor
Read this for a description of the processor’s system control coprocessor CP15
registers and programming details.

Chapter 4 Unaligned and Mixed-endian Data Access Support
Read this for a description of the processor support for unaligned and
mixed-endian data accesses.

Chapter 5 Program Flow Prediction
Read this for a description of the functions of the processor’s Prefetch Unit,
including static and dynamic branch prediction and the return stack.

Chapter 6 Memory Management Unit
Read this for a description of the processor’s Memory Management Unit (MMU)
and the address translation process.

Chapter 7 Level One Memory System
Read this for a description of the processor’s level one memory system, including
caches, TCM, DMA, TLBs, and write buffer.

Chapter 8 Level Two Interface
Read this for a description of the processor’s level two memory interface and the
peripheral port.

Chapter 9 Clocking and Resets

Read this for a description of the processor’s clocking modes and the reset
signals.

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. XXii
ID012310 Non-Confidential, Unrestricted Access

Preface

Chapter 10 Power Control

Read this for a description of the processor’s power control facilities.

Chapter 11 Coprocessor Interface

Read this for details of the processor’s coprocessor interface.

Chapter 12 Vectored Interrupt Controller Port

Read this for a description of the processor’s Vectored Interrupt Controller
interface.

Chapter 13 Debug

Read this for a description of the processor’s debug support.

Chapter 14 Debug Test Access Port
Read this for a description of the JTAG-based processor Debug Test Access Port.

Chapter 15 Trace Interface Port

Read this for a description of the trace interface port.

Chapter 16 Cycle Timings and Interlock Behavior
Read this for a description of the processor’s instruction cycle timing and for
details of the interlocks.

Chapter 17 AC Characteristics

Read this for a description of the timing parameters applicable to the processor.

Chapter 18 Introduction to the VFP coprocessor

Read this to get an overview of the VFP11 coprocessor.

Chapter 19 The VFP Register File

Read this to learn about the structure and operation of the VFP11 register file.

Chapter 20 VFP Programmer’s Model
Read this to learn about the VFPv2 programmer’s model, including the
ARMVSTE coprocessor extension instructions and the architecture compliance of
VFPv2 with the IEEE 754 standard.

Chapter 21 VFP Instruction Execution
Read this to learn about forwarding, hazards, and parallel execution in the VFP11
instruction pipelines.

Chapter 22 VFP Exception Handling
Read this to learn about VFP11 exceptional conditions and how they are handled
in hardware and software.

Appendix A Signal Descriptions

Read this for a description of the processor signals.

Appendix B Summary of ARM1136JF-S and ARM1176JZF-S Processor Differences

Read this for a summary of the differences between the ARM1136JF-S™ and
ARM1176JZF-S processors.

Appendix C Revisions
Read this for a description of the technical changes between released issues of this
book.
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. XXxiii

ID012310

Non-Confidential, Unrestricted Access

Preface

Glossary Read this for definitions of terms used in this book.

Conventions

Conventions that this book can use are described in:
. Typographical

. Timing diagrams

. Signals on page XxXv.

Typographical

The typographical conventions are:

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes signal
names. Also used for terms in descriptive lists, where appropriate.

monospace Denotes text that you can enter at the keyboard, such as commands, file
and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. You can enter
the underlined text instead of the full command or option name.

monospace italic ~ Denotes arguments to monospace text where the argument is to be
replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

<and > Enclose replaceable terms for assembler syntax where they appear in code
or code fragments. For example:

MRC p15, @ <Rd>, <CRn>, <CRm>, <Opcode_2>

Timing diagrams

The figure named Key to timing diagram conventions explains the components used in timing
diagrams. Variations, when they occur, have clear labels. You must not assume any timing
information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the
shaded area at that time. The actual level is unimportant and does not affect normal operation.

Clock
HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

e

High impedance to stable bus

Key to timing diagram conventions

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. XXiv
ID012310 Non-Confidential, Unrestricted Access

Additional reading

Preface

Signals
The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is
active-HIGH or active-LOW. Asserted means:

. HIGH for active-HIGH signals
. LOW for active-LOW signals.

Lower-case n At the start or end of a signal name denotes an active-LOW signal.

This section lists publications by ARM and by third parties.

See Infocenter, http://infocenter.arm.com, for access to ARM documentation.

ARM publications

This book contains information that is specific to this product. See the following documents for
other relevant information:

. ARM Architecture Reference Manual (ARM DDI 0406)

Note

The ARM DDI 0406 edition of the ARM Architecture Reference Manual (the ARM ARM)
incorporates the supplements to the previous ARM ARM, including the Security
Extensions supplement.

. Jazelle® V1 Architecture Reference Manual (ARM DDI 0225)

. AMBA® AXI Protocol V1.0 Specification (ARM IHI 0022)

. Embedded Trace Macrocell Architecture Specification (ARM THI 0014)
. ARM1136J-S Technical Reference Manual (ARM DDI 0211)

. ARM11 Memory Built-In Self Test Controller Technical Reference Manual
(ARM DDI 0289)

. ARM1176JZF-S™ and ARM1176JZ-S™ Implementation Guide (ARM DII 0081)
. CoreSight ETM11™ Technical Reference Manual (ARM DDI 0318)
. RealView™ Compilation Tools Developer Guide (ARM DUI 0203)

. ARM PrimeCell® Vectored Interrupt Controller (PL192) Technical Reference Manual
(ARM DDI 0273).

. Intelligent Energy Controller Technical Overview (ARM DTO 0005).

Other publications
This section lists relevant documents published by third parties:

. IEEE Standard Test Access Port and Boundary-Scan Architecture specification, IEEE Std.
1149.1-1990 (JTAG).

. IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985.

Figure 14-1 on page 14-2 is printed with permission IEEE Std. 1149.1-1990, IEEE Standard
Test Access Port and Boundary-Scan Architecture Copyright 2001, by IEEE. The IEEE
disclaims any responsibility or liability resulting from the placement and use in the described
manner.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. XXV
Non-Confidential, Unrestricted Access

Preface

Feedback

ARM welcomes feedback on this product and its documentation.

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

. The product name.
. The product revision or version.
. An explanation with as much information as you can provide. Include symptoms and

diagnostic procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

. the title

. the number, ARM DDI 0301H

. the page numbers to which your comments apply
. a concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. XXVi
ID012310 Non-Confidential, Unrestricted Access

Chapter 1
Introduction

This chapter introduces the ARM1176JZF-S processor and its features. It contains the following
sections:

About the processor on page 1-2

Extensions to ARMv6 on page 1-3

TrustZone security extensions on page 1-4
ARM1176JZF-S architecture with Jazelle technology on page 1-6
Components of the processor on page 1-8

Power management on page 1-23

Configurable options on page 1-25

Pipeline stages on page 1-26

Typical pipeline operations on page 1-28
ARM1176JZF-S instruction set summary on page 1-32
Product revisions on page 1-47.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 1-1
Non-Confidential, Unrestricted Access

Introduction

1.1 About the processor

The ARM1176JZF-S processor incorporates an integer core that implements the ARM11 ARM
architecture v6. It supports the ARM and Thumb™ instruction sets, Jazelle technology to enable
direct execution of Java bytecodes, and a range of SIMD DSP instructions that operate on 16-bit
or 8-bit data values in 32-bit registers.

The ARM1176JZF-S processor features:

TrustZone™ security extensions

provision for Intelligent Energy Management (IEM™)

high-speed Advanced Microprocessor Bus Architecture (AMBA) Advanced Extensible
Interface (AXI) level two interfaces supporting prioritized multiprocessor
implementations.

an integer core with integral EmbeddedICE-RT logic
an eight-stage pipeline

branch prediction with return stack

low interrupt latency configuration

internal coprocessors CP14 and CP15

Vector Floating-Point (VFP) coprocessor support
external coprocessor interface

Instruction and Data Memory Management Units (MMUSs), managed using MicroTLB
structures backed by a unified Main TLB

Instruction and data caches, including a non-blocking data cache with Hit-Under-Miss
(HUM)

virtually indexed and physically addressed caches

64-bit interface to both caches

level one Tightly-Coupled Memory (TCM) that you can use as a local RAM with DMA
trace support

JTAG-based debug.

Note

The only functional difference between the ARM1176JZ-S and ARM1176JZF-S processor is
that the ARM1176JZF-S processor includes a Vector Floating-Point (VFP) coprocessor.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 1-2
Non-Confidential, Unrestricted Access

Introduction

1.2 Extensions to ARMv6

The ARM1176JZF-S processor provides support for extensions to ARMv6 that include:

Store and Load Exclusive instructions for bytes, halfwords and doublewords and a new
Clear Exclusive instruction.

A true no-operation instruction and yield instruction.
Architectural remap registers.

Cache size restriction through CP15 c1. You can restrict cache size to 16KB for Operating
Systems (OSs) that do not support page coloring.

Revised use of TEX remap bits. The ARMv6 MMU page table descriptors use a large
number of bits to describe all of the options for inner and outer cachability. In reality, it is
believed that no application requires all of these options simultaneously. Therefore, it is
possible to configure the ARM1176JZF-S processor to support only a small number of
options by means of the TEX remap mechanism. This implies a level of indirection in the
page table mappings.

The TEX CB encoding table provides two OS managed page table bits. For binary
compatibility with existing ARMV6 ports of OSs, this gives a separate mode of operation
of the MMU. This is called the TEX Remap configuration and is controlled by bit [28] TR
in CP15 Register 1.

Revised use of AP bits. In the ARM1176JZF-S processor the APX and AP[1:0] encoding
bl11 is Privileged or User mode read only access. AP[0] indicates an abort type, Access
Bit fault, when CP15 c1[29] is 1.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 1-3
Non-Confidential, Unrestricted Access

Introduction

1.3 TrustZone security extensions

Caution

TrustZone security extensions enable a Secure software environment. The technology does not
protect the processor from hardware attacks and the implementor must take appropriate steps to
secure the hardware and protect trusted code.

The ARM1176JZF-S processor supports TrustZone security extensions to provide a secure
environment for software. This section summarizes processor elements that TrustZone uses. For
details of TrustZone, see the ARM Architecture Reference Manual.

The TrustZone approach to integrated system security depends on an established trusted code
base. The trusted code is a relatively small block that runs in the Secure world in the processor
and provides the foundation for security throughout the system. This security applies from
system boot and enforces a level of trust at each stage of a transaction.

The processor has:
. seven operating modes that can be either Secure or Non-secure
. Secure Monitor mode, that is always Secure.

Except when the processor is in Secure Monitor mode, the NS bit in the Secure Configuration
Register determines whether the processor runs code in the Secure or Non-secure worlds. The
Secure Configuration Register is in CP15 register c1, see cl, Secure Configuration Register on
page 3-52.

Secure Monitor mode is used to switch operation between the Secure and Non-secure worlds.

Secure Monitor mode uses these banked registers:
R13_mon Stack Pointer

R14_mon Link Register

SPSR_mon Saved Program Status Register

The processor implements this instruction to enter Secure Monitor mode:

SMC Secure Monitor Call, switches from one of the privileged modes to the Secure
Monitor mode.

The processor implements these TrustZone related signals:

nDMASIRQ Secure DMA transfer request, see c/1, DMA Channel Status Register on
page 3-117.

nDMAEXTERRIR
Not maskable error DMA interrupt, see c/1, DMA Channel Status Register on
page 3-117.

SPIDEN Secure privileged invasive debug enable, see Secure Monitor mode and debug on
page 13-4.

SPNIDEN Secure privileged non-invasive debug enable, see Secure Monitor mode and

debug on page 13-4.

Note
Do not confuse Secure Monitor mode with the Monitor debug-mode.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 1-4
Non-Confidential, Unrestricted Access

Introduction

AXI supports trusted peripherals through these signals:

AxPROTI[1]
Protection type signal, see AxPROT[2:0] on page 8-12.

RRESP[1:0]

Read response signal, see AXI interface signals on page A-7.

BRESP[1:0]

Write response signal, see AXI interface signals on page A-7.

ETMIASECCTL[1:0] and ETMCPSECCTL][1:0]

TrustZone information for tracing, see Secure control bus on page 15-4.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 1-5
Non-Confidential, Unrestricted Access

Introduction

1.4 ARM1176JZF-S architecture with Jazelle technology

The ARM1176JZF-S processor has three instruction sets:

. the 32-bit ARM instruction set used in ARM state, with media instructions
. the 16-bit Thumb instruction set used in Thumb state

. the 8-bit Java bytecodes used in Jazelle state.

For details of both the ARM and Thumb instruction sets, see the ARM Architecture Reference
Manual. For full details of the ARM1176JZF-S Java instruction set, see the Jazelle V1
Architecture Reference Manual.

1.4.1 Instruction compression

A typical 32-bit architecture can manipulate 32-bit integers with single instructions, and address
a large address space much more efficiently than a 16-bit architecture. When processing 32-bit
data, a 16-bit architecture takes at least two instructions to perform the same task as a single
32-bit instruction.

When a 16-bit architecture has only 16-bit instructions, and a 32-bit architecture has only 32-bit
instructions, overall the 16-bit architecture has higher code density, and greater than half the
performance of the 32-bit architecture.

Thumb implements a 16-bit instruction set on a 32-bit architecture, giving higher performance
than on a 16-bit architecture, with higher code density than a 32-bit architecture.

The ARM1176JZ-S processor can easily switch between running in ARM state and running in
Thumb state. This enables you to optimize both code density and performance to best suit your
application requirements.

1.4.2 The Thumb instruction set

The Thumb instruction set is a subset of the most commonly used 32-bit ARM instructions.
Thumb instructions are 16 bits long, and have a corresponding 32-bit ARM instruction that has
the same effect on the processor model. Thumb instructions operate with the standard ARM
register configuration, enabling excellent interoperability between ARM and Thumb states.

Thumb has all the advantages of a 32-bit core:

. 32-bit address space

. 32-bit registers

. 32-bit shifter and Arithmetic Logic Unit (ALU)
. 32-bit memory transfer.

Thumb therefore offers a long branch range, powerful arithmetic operations, and a large address
space.

The availability of both 16-bit Thumb and 32-bit ARM instruction sets, gives you the flexibility
to emphasize performance or code size on a subroutine level, according to the requirements of
their applications. For example, you can code critical loops for applications such as fast

interrupts and DSP algorithms using the full ARM instruction set, and linked with Thumb code.

1.4.3 Java bytecodes

ARM architecture v6 with Jazelle technology executes variable length Java bytecodes. Java
bytecodes fall into two classes:

Hardware execution

Bytecodes that perform stack-based operations.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 1-6
Non-Confidential, Unrestricted Access

Introduction

Software execution
Bytecodes that are too complex to execute directly in hardware are executed in
software. An ARM register is used to access a table of exception handlers to
handle these particular bytecodes.

A complete list of the ARM1176JZF-S processor-supported Java bytecodes and their
corresponding hardware or software instructions is in the Jazelle V1 Architecture Reference
Manual.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 1-7
Non-Confidential, Unrestricted Access

1.5

1.5.1

Components of the processor

The main components of the ARM1176JZF-S processor are:

Integer core

Load Store Unit (LSU) on page 1-11
Prefetch unit on page 1-11

Memory system on page 1-12

AMBA AXI interface on page 1-16
Coprocessor interface on page 1-17
Debug on page 1-17

Instruction cycle summary and interlocks on page 1-19
Vector Floating-Point (VFP) on page 1-19
System control on page 1-21

Interrupt handling on page 1-21.

Figure 1-1 shows the structure of the ARM1176JZF-S processor.

Introduction

ARM1176JZF-S c
JTAG interface| | ETM interface oprocessor VIC interface
interface
Vector Floating
Point Coprocessor
Instruction Prefetch Integer Load Store Data
Cache Unit core Unit Cache
Instruction L1 instruction ma'\r/:zmeoggnt L1 data side - Data
TCM side controller ugnit controller TCM
System
metrics
L2 instruction Power L2 data Peripheral L2 DMA
interface control interface port interface

Integer core

Figure 1-1 ARM1176JZF-S processor block diagram

The ARM1176JZF-S processor is built around the ARM11 integer core. It is an implementation
of the ARMv6 architecture, that runs the ARM, Thumb, and Java instruction sets. The processor
contains EmbeddedICE-RT™ logic and a JTAG debug interface to enable hardware debuggers to
communicate with the processor. The following sections describe the core in more detail:

. Instruction set categories on page 1-9

. Conditional execution on page 1-9

ARM DDI 0301H

ID012310

Non-Confidential, Unrestricted Access

Copyright © 2004-2009 ARM Limited. All rights reserved.

Introduction

. Registers
. Modes and exceptions
. Thumb instruction set on page 1-10

. DSP instructions on page 1-10

. Media extensions on page 1-10
. Datapath on page 1-10

. Branch prediction on page 1-11
. Return stack on page 1-11.

Instruction set categories

The main instruction set categories are:

. branch instructions

. data processing instructions

. status register transfer instructions

. load and store instructions

. coprocessor instructions.

. exception-generating instructions.
Note

Only load, store, and swap instructions can access data from memory.

Conditional execution

The processor conditionally executes nearly all ARM instructions. You can decide if the
condition code flags, Negative, Zero, Carry, and Overflow, are updated according to their result.
Registers

The ARM1176JZF-S core contains:
. 33 general-purpose 32-bit registers
. 7 dedicated 32-bit registers.

Note

At any one time, 16 general-purpose registers are visible. The remainder are banked registers
used to speed up exception processing.

Modes and exceptions

The core provides a set of operating and exception modes, to support systems combining
complex operating systems, user applications, and real-time demands. There are eight operating
modes, six of them are exception processing modes:

. User

. Supervisor

. fast interrupt

. normal interrupt
. abort

. system

. Undefined

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 1-9
Non-Confidential, Unrestricted Access

Introduction

. Secure Monitor.

Thumb instruction set

The Thumb instruction set contains a subset of the most commonly-used 32-bit ARM
instructions encoded into 16-bit wide opcodes. This reduces the amount of memory required for
instruction storage.

DSP instructions

The DSP extensions to the ARM instruction set provide:
. 16-bit data operations

. saturating arithmetic

. MAC operations.

The processor executes multiply instructions using a single-cycle 32x16 implementation. The
processor can perform 32x32, 32x16, and 16x16 multiply instructions (MAC).

Media extensions

The ARMv6 instruction set provides media instructions to complement the DSP instructions.
There are four media instruction groups:

. Multiplication instructions for handling 16-bit and 32-bit data, including
dual-multiplication instructions that operate on both 16-bit halves of their source registers.

This group includes an instruction that improves the performance and size of code for
multi-word unsigned multiplications.

. Single Instruction Multiple Data (SIMD) Instructions to perform operations on pairs of
16-bit values held in a single register, or on sets of four 8-bit values held in a single
register. The main operations supplied are addition and subtraction, selection, pack, and
saturation.

. Instructions to extract bytes and halfwords from registers and zero-extend or sign-extend
them. These include a parallel extraction of two bytes followed by extension of each byte
to a halfword.

. Unsigned Sum-of-Absolute-Differences (SAD) instructions. This is used in MPEG motion
estimation.

Datapath

The datapath consists of three pipelines:

. ALU, shift and Sat pipeline

. MAC pipeline

. load or store pipeline, see Load Store Unit (LSU) on page 1-11.

ALU, shift or Sat pipe

The ALU, shift and Sat pipeline executes most of the ALU operations, and includes a 32-bit
barrel shifter. It consists of three pipeline stages:

Shift The Shift stage contains the full barrel shifter. This stage performs all shifts,
including those required by the LSU.

The Shift stage implements saturating left shift that doubles the value of an
operand and saturates it.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 1-10
Non-Confidential, Unrestricted Access

Introduction

ALU The ALU stage performs all arithmetic and logic operations, and generates the
condition codes for instructions that set these flags.

The ALU stage consists of a logic unit, an arithmetic unit, and a flag generator.
The pipeline logic evaluates the flag settings in parallel with the main adder in the
ALU. The flag generator is enabled only on flag-setting operations.

The ALU stage separates the carry chains of the main adder for 8-bit and 16-bit
SIMD instructions.

Sat The Sat stage implements the saturation logic required by the various classes of
DSP instructions.

MAC pipe
The MAC pipeline executes all of the enhanced multiply, and multiply-accumulate instructions.

The MAC unit consists of a 32x16 multiplier and an accumulate unit that is configured to
calculate the sum of two 16x16 multiplies. The accumulate unit has its own dedicated single
register read port for the accumulate operand.

To minimize power consumption, the processor only clocks each of the MAC and ALU stages
when required.

Return stack

The processor includes a three-entry return stack to accelerate returns from procedure calls. For
each procedure call, the processor pushes the return address onto a hardware stack. When the
processor recognizes a procedure return, the processor pops the address held in the return stack
that the prefetch unit uses as the predicted return address.

Note
See Pipeline stages on page 1-26 for details of the pipeline stages and instruction progression.

See Chapter 3 System Control Coprocessor for system control coprocessor programming
information.

1.5.2 Load Store Unit (LSU)

1.5.3 Prefetch unit

The Load Store Unit (LSU) manages all load and store operations. The load-store pipeline
decouples loads and stores from the MAC and ALU pipelines.

When the processor issues LDM and STM instructions to the LSU pipeline, other instructions
run concurrently, subject to the requirements of supporting precise exceptions.

The prefetch unit fetches instructions from the instruction cache, Instruction TCM, or from
external memory and predicts the outcome of branches in the instruction stream.

See Chapter 5 Program Flow Prediction for more details.

Branch prediction

The core uses both static and dynamic branch prediction. All branches are predicted where the
target address is an immediate address, or fixed-offset PC-relative address.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 1-11
Non-Confidential, Unrestricted Access

Introduction

The first level of branch prediction is dynamic, through a 128-entry Branch Target Address
Cache (BTACQ). If the PC of a branch matches an entry in the BTAC, the processor uses the
branch history and the target address to fetch the new instruction stream.

The processor might remove dynamically predicted branches from the instruction stream, and
might execute such branches in zero cycles.

If the address mappings are changed, the BTAC must be flushed. A BTAC flush instruction is
provided in the CP15 coprocessor.

The processor uses static branch prediction to manage branches not matched in the BTAC. The
static branch predictor makes a prediction based on the direction of the branches.

154 Memory system

The level-one memory system provides the core with:

. separate instruction and data caches

. separate instruction and data Tightly-Coupled Memories

. 64-bit datapaths throughout the memory system

. virtually indexed, physically tagged caches

. memory access controls and virtual memory management

. support for four sizes of memory page

. two-channel DMA into TCMs

. I-fetch, D-read/write interface, compatible with multi-layer AMBA AXI
. 32-bit dedicated peripheral interface

. export of memory attributes for second-level memory system.

The following sections describe the memory system in more detail:
. Instruction and data caches

. Cache power management on page 1-13

. Instruction and data TCM on page 1-13

. TCM DMA engine on page 1-14

. DMA features on page 1-14

. Memory Management Unit on page 1-14.

Instruction and data caches

The core provides separate instruction and data caches. The cache has the following features:

. Independent configuration of the instruction and data cache during synthesis to sizes
between 4KB and 64KB.

. 4-way set-associative instruction and data caches. You can lock each way independently.
. Pseudo-random or round-robin replacement.

. Eight word cache line length.

. The MicroTLB entry determines whether cache lines are write-back or write-through.
. Ability to disable each cache independently, using the system control coprocessor.
. Data cache misses that are non-blocking. The processor supports up to three outstanding

data cache misses.

. Streaming of sequential data from LDM and LDRD operations, and sequential instruction
fetches.
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 1-12

ID012310

Non-Confidential, Unrestricted Access

Introduction

. Critical word first filling of the cache on a cache-miss.

. You can implement all the cache RAM blocks, and the associated tag and valid RAM
blocks using standard ASIC RAM compilers. This ensures optimum area and
performance of your design.

. Each cache line is marked with a Secure or Non-secure tag that defines if the line contains
Secure or Non-secure data.
Cache power management

To reduce power consumption, the core uses sequential cache operations to reduce the number
of full cache reads. If a cache read is sequential to the previous cache read, and the read is within
the same cache line, only the data RAM set that was previously read is accessed. The core does
not access tag RAM during sequential cache operations.

To reduce unnecessary power consumption additionally, the core only reads the addressed
words within a cache line at any time.
Instruction and data TCM

Because some applications might not respond well to caching, configurable memory blocks are
provided for Instruction and Data Tightly Coupled Memories (TCMs). These ensure high-speed
access to code or data.

An Instruction TCM typically holds an interrupt or exception code that the processor must
access at high speed, without any potential delay resulting from a cache miss.

A Data TCM typically holds a block of data for intensive processing, such as audio or video
processing.

You can configure each TCM to be Secure or Non-secure.

Level one memory system

You can separately configure the size of the Instruction TCM (ITCM) and the size of the Data
TCM (DTCM) to be 0OKB, 4KB. 8KB, 16KB, 32KB or 64KB. For each side (ITCM and DTCM):

. If you configure the TCM size to be 4KB you get one TCM, of 4KB, on this side.

. If you configure the TCM size to be larger than 4KB you get two TCMs on this side, each
of half the configured size. So, for example, if you configure an ITCM size of 16KB you
get two ITCMs, each of size 8KB.

Table 1-1 lists all possible TCM configurations. See Configurable options on page 1-25 for
more information about configuring your ARM1176JZF-S implementation.

Table 1-1 TCM configurations

Configured TCM size Number of TCMs Size of each TCM

0OKB 0 0
4KB 1 4KB
8KB 2 4KB
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 1-13

ID012310

Non-Confidential, Unrestricted Access

Introduction

Table 1-1 TCM configurations (continued)

Configured TCM size Number of TCMs Size of each TCM

16KB 2 8KB
32KB 2 16KB
64KB 2 32KB

The TCM can be anywhere in the memory map. The INITRAM pin enables booting from the
ITCM.

See Chapter 7 Level One Memory System for more details.

TCM DMA engine

To support use of the TCMs by data-intensive applications, the core provides two DMA
channels to transfer data to or from the Instruction or Data TCM blocks. DMA can proceed in
parallel with CPU accesses to the TCM blocks. Arbitration is on a cycle-by-cycle basis. The
DMA channels connect with the System-on-Chip (SoC) backplane through a dedicated 64-bit
AMBA AXI port.

The DMA controller is programmed using the CP15 system-control coprocessor. DMA accesses
can only be to or from the TCM, and an external memory. There is no coherency support with
the caches.

Note
Only one of the two DMA channels can be active at any time.

DMA features

The DMA controller has the following features:

. runs in background of CPU operations

. enables CPU priority access to TCM during DMA

. programmed with Virtual Addresses

. controls DMA to either the instruction or data TCM
. allocated by a privileged process (OS)

. software can check and monitor DMA progress
. interrupts on DMA event
. ability to configure each channel to transfer data between Secure TCM and Secure

external memory.

Memory Management Unit

The Memory Management Unit (MMU) has a unified Translation Lookaside Buffer (TLB) for
both instructions and data. The MMU includes a 4KB page mapping size to enable a smaller
RAM and ROM footprint for embedded systems and operating systems such as WindowsCE
that have many small mapped objects. The ARM1176JZF-S processor implements the Fast
Context Switch Extension (FCSE) and high vectors extension that are required to run Microsoft
WindowsCE. See Chapter 6 Memory Management Unit for more details.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 1-14
Non-Confidential, Unrestricted Access

Introduction

The MMU is responsible for protection checking, address translation, and memory attributes,
and some of these can be passed to an external level two memory system. The memory
translations are cached in MicroTLBs for each of the instruction and data caches, with a single
Main TLB backing the MicroTLBs.

The MMU has the following features:
. matches Virtual Address, ASID, and NSTID
. each TLB entry is marked with the NSTID

. checks domain access permissions

. checks memory attributes

. translates virtual-to-physical address

. supports four memory page sizes

. maps accesses to cache, TCM, peripheral port, or external memory
. hardware handles TLB misses

. software control of TLB.

Paging

Four page sizes are supported:
. 16MB super sections

. 1MB sections

. 64KB large pages

. 4KB small pages.

Domains

Sixteen access domains are supported.

TLB

A two-level TLB structure is implemented. Eight entries in the main TLB are lockable.
Hardware TLB loading is supported, and is backwards compatible with previous versions of the
ARM architecture.

ASIDs

TLB entries can be global, or can be associated with particular processes or applications using
Application Space IDentifiers (ASIDs). ASIDs enable TLB entries to remain resident during
context switches to avoid subsequent reload of TLB entries and also enable task-aware
debugging.

NSTID

TrustZone extensions enable the system to mark each entry in the TLB as Secure or Non-secure
with the Non-secure Table IDentifier (NSTID).

System control coprocessor

Cache, TCM, and DMA operations are controlled through a dedicated coprocessor, CP15,
integrated within the core. This coprocessor provides a standard mechanism for configuring the
level one memory system, and also provides functions such as memory barrier instructions. See
System control on page 1-21 for more details.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 1-15
Non-Confidential, Unrestricted Access

Introduction

1.5.5 AMBA AXI interface

The bus interface provides high bandwidth connections between the processor, second level
caches, on-chip RAM, peripherals, and interfaces to external memory.

There are separate bus interfaces for:
. instruction fetch, 64-bit data

. data read/write, 64-bit data

. peripheral access, 32-bit data

. DMA, 64-bit data.

All interfaces are AMBA AXI compatible. This enables them to be merged in smaller systems.
Additional signals are provided on each port to support second-level cache.

The ports support the following bus transactions:

Instruction fetch

Servicing instruction cache misses and noncacheable instruction fetches.

Data read/write

Servicing data cache misses, hardware handled TLB misses, cache eviction and
noncacheable data reads and writes.

DMA Servicing the DMA engine for writing and reading the TCMs. This behaves as a
single bidirectional port.

These ports enable several simultaneous outstanding transactions, providing:
. high performance from second-level memory systems that support parallelism
. high use of pipelined and multi-page memories such as SDRAM.

The following sections describe the AMBA AXI interface in more detail:
. Bus clock speeds

. Unaligned accesses

. Mixed-endian support

. Write buffer on page 1-17

. Peripheral port on page 1-17.

Bus clock speeds

The bus interface ports operate synchronously to the CPU clock if IEM is not implemented.

Unaligned accesses

The core supports unaligned data access. Words and halfwords can align to any byte boundary.
This enables access to compacted data structures with no software overhead. This is useful for
multi-processor applications and reducing memory space requirements.

The Bus Interface Unit (BIU) automatically generates multiple bus cycles for unaligned
accesses.
Mixed-endian support

The core provides the option of switching between little-endian and byte invariant big endian
data access modes. This means the core can share data with big-endian systems, and improves
the way the core manages certain types of data.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 1-16
Non-Confidential, Unrestricted Access

Introduction

Write buffer

All memory writes take place through the write buffer. The write buffer decouples the CPU
pipeline from the system bus for external memory writes. Memory reads are checked for
dependency against the write buffer contents.

Peripheral port

The peripheral port is a 32-bit AMBA AXTI interface that provides direct access to local,
Non-shared devices separately. The peripheral port does not use the main bus system. The
memory regions that these non-shared devices use are marked as Device and Non-Shared.
Accesses to these memory regions are routed to the peripheral port instead of to the data
read-write ports.

See Chapter 8 Level Two Interface for more details.

1.5.6 Coprocessor interface

1.5.7 Debug

The ARM1176JZF-S processor connects to external coprocessors through the coprocessor
interface. This interface supports all ARM coprocessor instructions:

. LDC

. LDCL
. STC

. STCL
. MRC

. MRRC
. MCR

. MCRR
. CDP.

The memory system returns data for all loads to coprocessors in the order of the accesses in the
program. The processor suppresses HUM operation of the cache for coprocessor instructions.

The external coprocessor interface relies on the coprocessor executing all its instructions in
order.

Externally-connected coprocessors follow the early stages of the core pipeline to permit the
exchange of instructions and data between the two pipelines. The coprocessor runs one pipeline
stage behind the core pipeline.

To prevent the coprocessor interface introducing critical paths, wait states can be inserted in
external coprocessor operations. These wait states enable critical signals to be retimed.

The VFP unit connects to the internal coprocessor interface that has different timings and
behavior, using controlled delays for internal interconnections.

Chapter 11 Coprocessor Interface describes the interface for on-chip coprocessors such as
floating-point or other application-specific hardware acceleration units.

The ARM1176JZF-S core implements the ARMv6.1 Debug architecture that includes
extensions of the ARMv6 Debug architecture to support TrustZone. It introduces three levels of
debug:

. debug everywhere
. debug in Non-secure privileged and user, and Secure user
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 1-17

ID012310

Non-Confidential, Unrestricted Access

Introduction

. debug in Non-secure only.

The debug coprocessor, CP14, implements a full range of debug features that Chapter 13 Debug
and Chapter 14 Debug Test Access Port describe.

The core provides extensive support for real-time debug and performance profiling.

The following sections describe debug in more detail:
. System performance monitoring

. ETM interface

. ETM trace buffer

. Software access to trace buffer

. Real-time debug facilities on page 1-19

. Debug and trace Environment on page 1-19.

System performance monitoring

This is a group of counters that you can configure to monitor the operation of the processor and
memory system. See System performance monitor on page 3-10 for more details.

ETM interface

You can connect an external Embedded Trace Macrocell (ETM) unit to the processor for
real-time code tracing of the core in an embedded system.

The ETM interface collects various processor signals and drives these signals from the core. The
interface is unidirectional and runs at the full speed of the core. The ETM interface connects
directly to the external ETM unit without any additional glue logic. You can disable the ETM
interface for power saving.

For more information see:

. the Embedded Trace Macrocell Architecture Specification

. Chapter 15 Trace Interface Port

. Appendix A Signal Descriptions, for details of ETM-related signals.

ETM trace buffer

You can extend the functionality of the ETM by adding an on-chip trace buffer. The trace buffer
is an on-chip memory area. The trace buffer stores trace information during capture that
otherwise passes immediately through the trace port at the operating frequency of the core.

When capture is complete the stored information can be read out at a reduced clock rate from
the trace buffer using the JTAG port of the SoC, instead of through a dedicated trace port.

This is a two-step process that avoids you implementing a wide trace port that has many
high-speed device pins. In effect, a zero-pin trace port is created where the device already has a
JTAG port and associated pins.

Software access to trace buffer

You can access buffered trace information through an APB slave-based memory-mapped
peripheral included as part of the trace buffer. You can perform internal diagnostics on a closed
system where a JTAG port is not normally brought out.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 1-18
Non-Confidential, Unrestricted Access

Introduction

Real-time debug facilities

The ARM1176JZF-S processor contains an EmbeddedICE-RT logic unit that provides the
following real-time debug facilities:

. up to six breakpoints
. thread-aware breakpoints
. up to two watchpoints

. Debug Communications Channel (DCC).

The EmbeddedICE-RT logic connects directly to the core and monitors the internal address and
data buses. You can access the EmbeddedICE-RT logic in one of two ways:

. executing CP14 instructions
. through a JTAG-style interface and associated TAP controller.

The EmbeddedICE-RT logic supports two modes of debug operation:
Halting debug-mode

On a debug event, such as a breakpoint or watchpoint, the debug logic stops the
core and forces the core into Debug state. This enables you to examine the internal
state of the core, and the external state of the system, independently from other
system activity. When the debugging process completes, the core and system state
is restored, and normal program execution resumes.

Monitor debug-mode

On a debug event, the core generates a debug exception instead of entering Debug
state, as in Halting debug-mode. The exception entry activates a debug monitor
program that performs critical interrupt service routines to debug the processor.
The debug monitor program communicates with the debug host over the DCC.

Debug and trace Environment

Several external hardware and software tools are available for you to enable:
. real-time debugging using the EmbeddedICE-RT logic
. execution trace using the ETM.

1.5.8 Instruction cycle summary and interlocks

Chapter 16 Cycle Timings and Interlock Behavior describes instruction cycles and gives
examples of interlock timing.

1.5.9 Vector Floating-Point (VFP)

The VFP coprocessor supports floating point arithmetic operations and is a functional block
within the ARM1176JZF-S processor. The VFP coprocessor is mapped as coprocessor numbers
10 and 11. Software can determine whether the VFP is present by the use of the Coprocessor
Access Control Register. See c1, Coprocessor Access Control Register on page 3-51 for more
details.

The VFP implements the ARM VFPv2 floating point coprocessor instruction set. It supports
single and double-precision arithmetic on vector-vector, vector-scalar, and scalar-scalar data
sets. Vectors can consist of up to eight single-precision, or four double-precision elements.

The VFP has its own bank of 32 registers for single-precision operands that you can:

. use in pairs for double-precision operands
. operate loads and stores of VFP registers in parallel with arithmetic operations.
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 1-19

ID012310

Non-Confidential, Unrestricted Access

Introduction

The VFP supports a wide range of single and double precision operations, including ABS, NEG,
COPY, MUL, MAC, DIV, and SQRT. The VFP effectively executes most of these in a single
cycle. Table 1-2 lists the exceptions. These issue latencies also apply to individual elements in
a vector operation.

Table 1-2 Double-precision VFP operations

Instruction types Issue latency

DP MUL and MAC 2 cycle

SP DIV, SQRT 14 cycles

DP DIV, SQRT 28 cycles

All other instructions 1 cycle

Compliance with the IEEE 754 standard

The VFP supports all five floating point exceptions defined by the IEEE 754 standard:
. invalid operation

. divide by zero
. overflow

. underflow

. inexact.

You can individually enable or disable these exception traps. If disabled, the default results
defined by IEEE 754 are returned. All rounding modes are supported, and basic single and basic
double formats are used.

For full compliance, the VFP requires support code to handle arithmetic where operands or
results are de-norms. This support code is normally installed on the Undefined instruction
exception handler.

Flush-to-zero mode

A flush-to-zero mode is provided where a default treatment of de-norms is applied. Table 1-3
lists the default behavior in flush-to-zero mode.

Table 1-3 Flush-to-zero mode

Operation Flush-to-zero

De-norm operand(s) Treated as 0+. Inexact flag set.

De-norm result Returned as 0+. Inexact Flag set.

Operations not supported

The following operations are not directly supported by the VFP:

. remainder
. binary (decimal) conversions
. direct comparisons between single and double-precision values.

These are normally implemented as C library functions.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 1-20
Non-Confidential, Unrestricted Access

1.5.10 System control

Introduction

The control of the memory system and its associated functionality, and other system-wide
control attributes are managed through a dedicated system control coprocessor, CP15. See
System control and configuration on page 3-5 for more details.

1.5.11 Interrupt handling

Interrupt handling in the ARM1176JZF-S processor is compatible with previous ARM
architectures, but has several additional features to improve interrupt performance for real-time
applications.

The following sections describe interrupt handling in more detail:
. Vectored Interrupt Controller port

. Low interrupt latency configuration

. Configuration on page 1-22

. Exception processing enhancements on page 1-22.

Note

The nIRQ and nFIQ signals are level-sensitive and must be held LOW until a suitable interrupt
response is received from the processor.

Vectored Interrupt Controller port

The core has a dedicated port that enables an external interrupt controller, such as the ARM
Vectored Interrupt Controller (VIC), to supply a vector address along with an interrupt request
(IRQ) signal. This provides faster interrupt entry but you can disable it for compatibility with
earlier interrupt controllers.

Low interrupt latency configuration

This mode minimizes the worst-case interrupt latency of the processor, with a small reduction
in peak performance, or instructions-per-cycle. You can tune the behavior of the core to suit the
requirements of the application.

The low interrupt latency configuration disables HUM operation of the cache. In low interrupt
latency configuration, on receipt of an interrupt, the ARM1176JZF-S processor:

. abandons any pending restartable memory operations
. restarts memory operations on return from the interrupt.

To obtain maximum benefit from the low interrupt latency configuration, software must only use
multi-word load or store instructions that are fully restartable. The software must not use
multi-word load or store instructions on memory locations that produce side-effects for the type
of access concerned. This applies to:

ARM LDC, all forms of LDM, LDRD, and STC, and all forms of STM and STRD.
Thumb LDMIA, STMIA, PUSH, and POP.

To achieve optimum interrupt latency, memory locations accessed with these instructions must
not have large numbers of wait-states associated with them. To minimize the interrupt latency,
the following is recommended:

. multiple accesses to areas of memory marked as Device or Strongly Ordered must not be
performed
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 1-21

ID012310

Non-Confidential, Unrestricted Access

Introduction

. access to slow areas of memory marked as Device or Strongly Ordered must not be
performed. That is, those that take many cycles in generating a response

. SWP operations must not be performed to slow areas of memory.

Configuration

You configure the processor for low interrupt latency mode by use of the system control
coprocessor. To ensure that a change between normal and low interrupt latency configurations
is synchronized correctly, you must use software systems that only change the configuration
while interrupts are disabled.

Exception processing enhancements

The ARMv6 architecture contains several enhancements to exception processing, to reduce
interrupt handler entry and exit time:

SRS Save return state to a specified stack frame.
RFE Return from exception.
CPS Directly modify the CPSR.

Note

With TrustZone, in Non-secure state, specifying Secure Monitor mode in the <mode> field of the
SRS instruction causes the processor to take the Undefined exception.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 1-22
Non-Confidential, Unrestricted Access

Introduction

1.6 Power management

The ARM1176JZF-S processor includes several micro-architectural features to reduce energy
consumption:

Accurate branch and return prediction, reducing the number of incorrect instruction fetch
and decode operations.

Use of physically tagged caches that reduce the number of cache flushes and refills, to
save energy in the system.

The use of MicroTLBs reduces the power consumed in translation and protection
look-ups for each memory access.

The caches use sequential access information to reduce the number of accesses to the Tag
RAMs and to unmatched data RAMs.

Extensive use of gated clocks and gates to disable inputs to unused functional blocks.
Because of this, only the logic actively in use to perform a calculation consumes any
dynamic power.

Optionally supports IEM. The ARM1176JZF-S is separated into three different blocks to
support three different power domains:

— all the RAMS

— the core logic that is clocked by CLKIN and FREECLKIN

— four optional IEM Register Slices to have an asynchronous interface between the
Level 2 ports powered by VCore and clocked by CLKIN, and the AXI system
powered by VSoc and clocked by ACLK clocks, one for each port.

The ARM1176JZF-S processor support four levels of power management:

Run mode This mode is the normal mode of operation when the processor can use all its

functions.

Standby mode

This mode disables most of the processor clocks of the device, while processor
remains powered up. This reduces the power drawn to the static leakage current,
plus a tiny clock power overhead required to enable the processor to wake up from
the standby state. One of the following events cause a transition from the standby
mode to the run mode:

. an interrupt, either masked or unmasked
. a debug request, regardless of whether debug is enabled
. reset.

Shutdown mode

This mode powers down the entire processor. The processor must save all states,
including cache and TCM state, externally. The processor is returned to the run
state by the assertion of reset. The processor saves the states with interrupts
disabled, and finishes with a Data Synchronization Barrier operation. The
ARMI1176JZF-S processor then communicates with the power controller that it is
ready to be powered down.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 1-23
Non-Confidential, Unrestricted Access

Introduction

Dormant mode

This mode powers down the processor and leaves the caches and the TCM
powered up and maintaining their state. The valid bits remain visible to software
to enable you to implement dormant mode. For full implementation of dormant
mode you must:

. modify the RAM blocks to include an input clamp

. implement separate power domains.

For full implementation of dormant mode see ARM1176JZF-S and ARM1176JZ-S
Implementation Guide.

For more details of power management features see Chapter 10 Power Control.

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 1-24
ID012310 Non-Confidential, Unrestricted Access

Introduction

1.7 Configurable options

Note

These options are configurable features of your ARM1176JZF-S processor implementation.
They are not programmable options of the implemented device.

Table 1-4 lists the ARM1176JZF-S processor configurable options.

Table 1-4 Configurable options

Feature Range of options
IEM support Yes or No
Cache way size 1KB, 2KB, 4KB, 8KB, or 16KB

Number of cache ways 4, not configurable

TCM block size 4KB, 8KB, 16KB, or 32KB

Number of TCM blocks 0, or auto-configures? to 1, or 2

a. Number of TCM blocks depends only on the size of the
TCM RAM.

In addition, the form of the BIST solution for the RAM blocks in the ARM1176JZF-S design is
determined when the processor is implemented. For details, see the ARM11 Memory Built-In
Self Test Controller Technical Reference Manual.

Table 1-5 lists the default configuration of ARM1176JZF-S processor.

Table 1-5 ARM1176JZF-S processor default configurations

Feature Default value
IEM support No
Cache way size 4KB

Number of cache ways 4

TCM block size 8KB

Number of TCM blocks 2

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 1-25
ID012310 Non-Confidential, Unrestricted Access

1.8 Pipeline stages

Introduction

Figure 1-2 shows:

. the two Fetch stages

. a Decode stage

. an Issue stage

. the four stages of the ARM1176JZF-S integer execution pipeline.

These eight stages make up the processor pipeline.

Fe1 Fe2 De Iss Sh ALU Sat WBex
1st fetch 2nd fetch Instruction Reg. read Shifter ALU Saturation Writeback
stage stage decode and issue stage operation stage Mul/ALU

MAC1 MAC2 MAC3

1st multiply | |2nd multiply| |3rd multiply
acc. stage acc. stage acc. stage

ADD DC1 DC2 WBIs
Address Data Data Writeback
generation cache 1 cache 2 from LSU

Figure 1-2 ARM1176JZF-S pipeline stages

From Figure 1-2, the pipeline operations are:

Fel

Fe2
De

Iss

Sh
ALU
Sat
WBex
MAC1
MAC2
MAC3
ADD
DC1
DC2
WBIs

First stage of instruction fetch where address is issued to memory and data returns
from memory

Second stage of instruction fetch and branch prediction.
Instruction decode.

Register read and instruction issue.

Shifter stage.

Main integer operation calculation.

Pipeline stage to enable saturation of integer results.
Write back of data from the multiply or main execution pipelines.
First stage of the multiply-accumulate pipeline.

Second stage of the multiply-accumulate pipeline.
Third stage of the multiply-accumulate pipeline.
Address generation stage.

First stage of data cache access.

Second stage of data cache access.

Write back of data from the Load Store Unit.

By overlapping the various stages of operation, the ARM1176JZF-S processor maximizes the
clock rate achievable to execute each instruction. It delivers a throughput approaching one
instruction for each cycle.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 1-26

Non-Confidential, Unrestricted Access

Introduction

The Fetch stages can hold up to four instructions, where branch prediction is performed on
instructions ahead of execution of earlier instructions.

The Issue and Decode stages can contain any instruction in parallel with a predicted branch.

The Execute, Memory, and Write stages can contain a predicted branch, an ALU or multiply
instruction, a load/store multiple instruction, and a coprocessor instruction in parallel execution.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 1-27
Non-Confidential, Unrestricted Access

1.9 Typical pipeline operations

Introduction

Figure 1-3 shows all the operations in each of the pipeline stages in the ALU pipeline, the
load/store pipeline, and the HUM buffers.

ALU
pipeline

Multiply
pipeline

Load/store
pipeline

Hit under
miss

ALU
pipeline

Multiply
pipeline

Load/store
pipeline

Ex1 Ex2 Ex3
Sh ALU Sat
Shifter Calculate
Fe1 Fe2 De Iss operation wrteback Saturation WBex
Register B
1st fetch 2nd fetch Instruction read and r aiste r
stage stage decode instruction MAC1 MAC2 MAC3 egistel «
issue writebacl
1st 2nd 3rd
L J multiply multiply multiply
. . stage stage stage
Common decode pipeline
ADD DC1 DC2 WBIs
First stage Second
Data N
address of data stage of Writeback
calculation cache data cache from LSU
access access
Load miss
waits
Figure 1-3 Typical operations in pipeline stages
Figure 1-4 shows a typical ALU data processing instruction. The processor does not use the
load/store pipeline or the HUM buffer.
Ex1 Ex2 Ex3
Sh ALU Sat
. Calculate
Shifter N .
Fe1 Fe2 De Iss operation [| I W'\'/‘;EZCK 7| Saturation WBex
Register /' Base
1st fetch N 2nd fetch Instruction N read and register
stage stage decode instruction MAC1 MAC2 MAC3 9
issue writeback
L J Not used Not used Not used
Common decode pipeline
ADD DC1 DC2 WBIs
Not used Not used Not used Not used
Not used

Hit under
miss

Figure 1-4 Typical ALU operation

Figure 1-5 on page 1-29 shows a typical multiply operation. The MUL instruction can loop in
the MACI1 stage until it has passed through the first part of the multiplier array enough times.

The MUL instruction progresses to MAC2 and MAC3 where it passes through the second half
of the array once to produce the final result.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved.
Non-Confidential, Unrestricted Access

1-28

Ex1 Ex2 Ex3
Sh ALU Sat
Fe1 Fe2 De Iss Not used Not used Not used WBex
Register Base
1st fetch 2nd fetch Instruction read and register
stage stage decode instruction MACA1 MAC2 MAC3 writgeback
issue \\ /
1st 2nd 3rd
J multiply H multiply H multiply
. . stage stage stage
Common decode pipeline _ i
i 1
ADD DC1 DC2 WBIs
Not used Not used Not used Not used
Not used

Introduction

ALU
pipeline

Multiply
pipeline

Load/store
pipeline

Hit under
miss

Figure 1-5 Typical multiply operation

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved.
Non-Confidential, Unrestricted Access

1-29

Introduction

1.91 Instruction progression

Figure 1-6 shows an LDR/STR operation that hits in the data cache.

Ex1 Ex2 Ex3
Sh ALU Sat
. Calculate
Shifter .) ALU
Fe1 Fe2 De Iss operation T W';III:IEZCK 7| Saturation WBex pipeline
Register /' \A Base
1st fetch N 2nd fetch N Instruction read and register
stage stage decode instruction MAC1 MAC2 MAC3 9
issue writeback
L l J Not used Not used Not used MUItI.pIy
pipeline
Common decode pipeline
ADD DC1 DC2 WBIs
Data First stage Second Load/st
of data stage of Writeback oad/store
C:ﬂi::;zn cache data cache from LSU pipe"ne
access access
Not used Hit u.nder
miss

Figure 1-6 Progression of an LDR/STR operation

Figure 1-7 shows the progression of an LDM/STM operation that completes by use of the
load/store pipeline. Other instructions can use the ALU pipeline at the same time as the
LDM/STM completes in the load/store pipeline.

Ex1 Ex2 Ex3
Sh ALU Sat
. Calculate
Shifter N . ALU
- H— writeback H—® Saturation . .
Fe1 Fe2 De Iss I operation value WBex p|pe||ne
Register % \ Base
1st fetch N 2nd fetch N Instruction read and register
stage stage decode instruction MACA1 MAC2 MAC3 9
issue writeback
Multipl
L l J Not used Not used Not used .u .py
pipeline
Common decode pipeline
ADD DC1 DC2 WBIs
Data First stage Second Load/st
of data stage of Writeback oad/store
address — —> — .
calculation cache data cache from LSU pipeline
access access
Not used .
unless a Hit under
miss miss
occurs

Figure 1-7 Progression of an LDM/STM operation

Figure 1-8 on page 1-31 shows the progression of an LDR that misses. When the LDR is in the
HUM buffers, other instructions, including independent loads that hit in the cache, can run under
it.

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 1-30
ID012310 Non-Confidential, Unrestricted Access

Ex1 Ex2 Ex3
Sh 5 ALU 6 Sat 7
Shifter Calculate
Fel 1 Fe2 2 De 3 Iss 4 operation [T Writeback — Saturation WBex 8
y value
Register / \A Base
1st fetch 2nd fetch Instruction read and register
stage stage decode instruction MAC1 MAC2 MAC3 egistel
issue writeback
l J Not used Not used Not used
Common decode pipeline
ADD 5 DC1 6 DC2 11 WBIs 12
Data First stage Second
of data stage of Writeback
C:;i ?J:ztsits)n cache data cache from LSU
access access
9,10
Load

Introduction

ALU
pipeline

Multiply
pipeline

Load/store
pipeline

Hit under
miss

Figure 1-8 Progression of an LDR that misses

See Chapter 16 Cycle Timings and Interlock Behavior for details of instruction cycle timings.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved.
Non-Confidential, Unrestricted Access

1-31

Introduction

110 ARM1176JZF-S instruction set summary

This section provides:

an Extended ARM instruction set summary on page 1-33

a Thumb instruction set summary on page 1-44.

Table 1-6 lists a key to the ARM and Thumb instruction set tables.

The ARM1176JZF-S processor implements the ARM architecture v6 with ARM Jazelle
technology. For a description of the ARM and Thumb instruction sets, see the ARM Architecture
Reference Manual. Contact ARM Limited for complete descriptions of all instruction sets.

Table 1-6 Key to instruction set tables

Symbol Description

{1} Update base register after operation if ! present.

{A} For all STMs and LDMs that do not load the PC, stores or restores the User mode banked registers
instead of the current mode registers if » present, and sets the S bit. For LDMs that load the PC,
indicates that the CPSR is loaded from the SPSR.

B Byte operation.

H Halfword operation.

T Forces execution to be handled as having User mode privilege. Cannot be used with pre-indexed
addresses.

X Selects HIGH or LOW 16 bits of register Rm. T selects the HIGH 16 bits,

T = top, and B selects the LOW 16 bits, B = bottom.

y Selects HIGH or LOW 16 bits of register Rs. T selects the HIGH 16 bits,
T = top, and B selects the LOW 16 bits, B = bottom.

{cond} Updates condition flags if cond present. See Table 1-15 on page 1-43.

{field} See Table 1-14 on page 1-43.

{S} Sets condition codes, optional.

<a_mode2> See Table 1-8 on page 1-40.

<a_mode2P> See Table 1-9 on page 1-41.

<a_mode3> See Table 1-10 on page 1-42.

<a_moded> See Table 1-11 on page 1-42.

<a_mode5> See Table 1-12 on page 1-42.

<cp_num> One of the coprocessors p0 to p15.

<effect> Specifies the effect required on the interrupt disable bits, A, I, and F in the CPSR:

<endian_specifier>

IE = Interrupt enable
ID = Interrupt disable.
<iflags> specifies the bits affected if <effect> is specified.

BE = Set E bit in instruction, set CPSR E bit.
LE = Reset E bit in instruction, clear CPSR E bit.

<HighReg>

Specifies a register in the range R8 to R15.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 1-32
Non-Confidential, Unrestricted Access

1.10.1

Introduction

Table 1-6 Key to instruction set tables (continued)

Symbol

Description

<iflags>

<immed_8x4>

A sequence of one or more of the following:

a = Set A bit.
i= Set I bit.
f = Set F bit.

If <effect> is specified, the sequence determines the interrupt flags that are affected.

A 10-bit constant, formed by left-shifting an 8-bit value by two bits.

<immed_8> An 8-bit constant.

<immed_8r> A 32-bit constant, formed by right-rotating an 8-bit value by an even number of bits.
<label> The target address to branch to.

<LowReg> Specifies a register in the range RO to R7.

<mode> The new mode number for a mode change. See Mode bits on page 2-28.

<opl>, <op2>

Specify, in a coprocessor-specific manner, the coprocessor operation to perform.

<operand2> See Table 1-13 on page 1-43.

<option> Specifies additional instruction options to the coprocessor. An integer in the range 0 to 255
surrounded by { and }.

<reglist> A comma-separated list of registers, enclosed in braces {and}.

<rotation> One of ROR #8, ROR #16, or ROR #24.

<Rm> Specifies the register, the value of which is the instruction operand.

<Rn> Specifies the address of the base register.

<shift> Specifies the optional shift. If present, it must be one of:

. LSL #N. N must be in the range O to 31.
. ASR #N. N must be in the range 1 to 32.

Extended ARM instruction set summary

Table 1-7 summarizes the extended ARM instruction set.

Table 1-7 ARM instruction set summary

Operation Assembler

Arithmetic Add ADD{cond}{S} <Rd>, <Rn>, <operand2>
Add with carry ADC{cond}{S} <Rd>, <Rn>, <operand2>
Subtract SUB{cond}{S} <Rd>, <Rn>, <operand2>
Subtract with carry SBC{cond}{S} <Rd>, <Rn>, <operand2>
Reverse subtract RSB{cond}{S} <Rd>, <Rn>, <operand2>
Reverse subtract with carry RSC{cond}{S} <Rd>, <Rn>, <operand2>
Multiply MUL{cond}{S} <Rd>, <Rm>, <Rs>
Multiply-accumulate MLA{cond}{S} <Rd>, <Rm>, <Rs>, <Rn>

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 1-33

ID012310

Non-Confidential, Unrestricted Access

Introduction

Table 1-7 ARM instruction set summary (continued)

Operation Assembler
Multiply unsigned long UMULL{cond}{S} <RdLo>, <RdHi>, <Rm>, <Rs>
Multiply unsigned accumulate long ~ UMLAL{cond}{S} <RdLo>, <RdHi>, <Rm>, <Rs>
Multiply signed long SMULL{cond}{S} <RdLo>, <RdHi>, <Rm>, <Rs>
Multiply signed accumulate long SMLAL{cond}{S} <RdLo>, <RdHi>, <Rm>, <Rs>
Saturating add QADD{cond} <Rd>, <Rm>, <Rn>
Saturating add with double QDADD{cond} <Rd>, <Rm>, <Rn>
Saturating subtract QSUB{cond} <Rd>, <Rm>, <Rn>
Saturating subtract with double QDSUB{cond} <Rd>, <Rm>, <Rn>
Multiply 16x16 SMULxy{cond} <Rd>, <Rm>, <Rs>
Multiply-accumulate 16x16+32 SMLAxy{cond} <Rd>, <Rm>, <Rs>, <Rn>
Multiply 32x16 SMULWy{cond} <Rd>, <Rm>, <Rs>
Multiply-accumulate 32x16+32 SMLAWy{cond} <Rd>, <Rm>, <Rs>, <Rn>
Multiply signed SMLALxy{cond} <RdLo>, <RdHi>, <Rm>, <Rs>
accumulate long 16x16+64
Count leading zeros CLZ{cond} <Rd>, <Rm>

Compare Compare CMP{cond} <Rn>, <operand2>
Compare negative CMN{cond} <Rn>, <operand2>

Logical Move MOV{cond}{S} <Rd>, <operand2>
Move NOT MVN{cond}{S} <Rd>, <operand2>
Test TST{cond} <Rn>, <operand2>
Test equivalence TEQ{cond} <Rn>, <operand2>
AND AND{cond}{S} <Rd>, <Rn>, <operand2>
XOR EOR{cond}{S} <Rd>, <Rn>, <operand2>
OR ORR{cond}{S} <Rd>, <Rn>, <operand2>
Bit clear BIC{cond}{S} <Rd>, <Rn>, <operand2>
Copy CPY{<cond>} <Rd>, <Rm>

Branch Branch B{cond} <label>
Branch with link BL{cond} <label>

Branch and exchange

Branch, link and exchange

BX{cond} <Rm>

BLX <label>

Branch, link and exchange

BLX{cond} <Rm>

Branch and exchange to Jazelle

state

BXJ{cond} <Rm>

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 1-34
Non-Confidential, Unrestricted Access

Introduction

Table 1-7 ARM instruction set summary (continued)

Operation Assembler
Status register Move SPSR to register MRS{cond} <Rd>, SPSR
handling
Move CPSR to register MRS{cond} <Rd>, CPSR
Move register to SPSR MSR{cond} SPSR_{field}, <Rm>
Move register to CPSR MSR{cond} CPSR_{field}, <Rm>
Move immediate to SPSR flags MSR{cond} SPSR_{field}, #<immed_8r>
Move immediate to CPSR flags MSR{cond} CPSR_{field}, #<immed_8r>
Load Word LDR{cond} <Rd>, <a_mode2>
Word with User mode privilege LDR{cond}T <Rd>, <a_mode2P>
PC as destination, branch and LDR{cond} R15, <a_mode2P>
exchange
Byte LDR{cond}B <Rd>, <a_mode2>
Byte with User mode privilege LDR{cond}BT <Rd>, <a_mode2P>
Byte signed LDR{cond}SB <Rd>, <a_mode3>
Halfword LDR{cond}H <Rd>, <a_mode3>
Halfword signed LDR{cond}SH <Rd>, <a_mode3>
Doubleword LDR{cond}D <Rd>, <a_mode3>
Return from exception RFE<a_mode4> <Rn>{!}
Load multiple Stack operations LDM{cond}<a_mode4L> <Rn>{!}, <reglist>
Increment before LDM{cond}IB <Rn>{!}, <reglist>{A}
Increment after LDM{cond}IA <Rn>{!}, <reglist>{A}
Decrement before LDM{cond}DB <Rn>{!}, <reglist>{A}
Decrement after LDM{cond}DA <Rn>{!}, <reglist>{A}
Stack operations and restore CPSR LDM{cond}<a_mode4> <Rn>{!}, <reglist+pc>A
User registers LDM{cond}<a_mode4> <Rn>{!}, <reglist>A
Soft preload Memory system hint PLD <a_mode2>
In Non-secure this instruction
behaves like a NOP
Store Word STR{cond} <Rd>, <a_mode2>

Word with User mode privilege

STR{cond}T <Rd>, <a_mode2P>

Byte

STR{cond}B <Rd>, <a_mode2>

Byte with User mode privilege

STR{cond}BT <Rd>, <a_mode2P>

Halfword

Doubleword

Store return state

STR{cond}H <Rd>, <a_mode3>
STR{cond}D <Rd>, <a_mode3>

SRS<a_mode4> <mode>{!}

ARM DDI 0301H

Copyright © 2004-2009 ARM Limited. All rights reserved. 1-35
Non-Confidential, Unrestricted Access

Introduction

Table 1-7 ARM instruction set summary (continued)

Operation

Assembler

Store multiple

Swap

Stack operations

STM{cond}<a_mode4S> <Rn>{!}, <reglist>

User registers

STM{cond}<a_mode4S> <Rn>, <reglist>A

Increment before

STM{cond}IB, <Rn>{!}, <reglist>{A}

Increment after

STM{cond}IA, <Rn>{!}, <reglist>{A}

Decrement before

Decrement after

STM{cond}DB, <Rn>{!}, <reglist>{A}

STM{cond}DA, <Rn>{!}, <reglist>{A}

Word

SWP{cond} <Rd>, <Rm>, [<Rn>]

Byte

SWP{cond}B <Rd>, <Rm>, [<Rn>]

Change state

NOP-compatible
hints

Change processor state

CPS<effect> <iflags>{, <mode>}

Change processor mode

CPS <mode>

Change endianness

No Operation

SETEND <endian_specifier>

NOP{<cond>}
YIELD{<cond>}

Byte-reverse

Byte-reverse word

REV{cond} <Rd>, <Rm>

Byte-reverse halfword

REV16{cond} <Rd>, <Rm>

Byte-reverse signed halfword

REVSH{cond} <Rd>, <Rm>

Synchronization Load exclusive LDREX{cond} <Rd>, [<Rn>]
primitives
Store exclusive STREX{cond} <Rd>, <Rm>, [<Rn>]
Load Byte Exclusive LDREXB{cond} <Rxf>, [<Rbase>]
Load Halfword Exclusive LDREXH{cond} <Rd>, [<Rn>]
Load Doubleword Exclusive LDREXD{cond} <Rd>, [<Rn>]
Store Byte Exclusive STREXB{cond} <Rd>, <Rm>, [<Rn>]
Store Halfword Exclusive STREXH{cond} <Rd>, <Rm>, [<Rn>]
Store Doubleword Exclusive STREXD{cond} <Rd>, <Rm>, [<Rn>]
Clear Exclusive CLREX
Coprocessor Data operations CDP{cond} <cp_num>, <opl>, <CRd>, <CRn>, <CRm>{, <op2>}

Move to ARM reg from coproc

MRC{cond} <cp_num>, <opl>, <Rd>, <CRn>, <CRm>{, <op2>}

Move to coproc from ARM reg

Move double to ARM reg
from coproc

Move double to coproc

MCR{cond} <cp_num>, <opl>, <Rd>, <CRn>, <CRm>{, <op2>}

MRRC{cond} <cp_num>, <opl>, <Rd>, <Rn>, <CRm>

MCRR{cond} <cp_num>, <opl>, <Rd>, <Rn>, <CRm>

from ARM reg
Load LDC{cond} <cp_num>, <CRd>, <a_mode5>
Store STC{cond} <cp_num>, <CRd>, <a_mode5>
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 1-36

ID012310

Non-Confidential, Unrestricted Access

Introduction

Table 1-7 ARM instruction set summary (continued)

Operation Assembler
Alternative Data operations CDP2 <cp_num>, <opl>, <CRd>, <CRn>, <CRm>{, <op2>}
coprocessor

Supervisor call

Move to ARM reg from coproc

MRC2 <cp_num>, <opl>, <Rd>, <CRn>, <CRm>{, <op2>}

Move to coproc from ARM reg

MCR2 <cp_num>, <opl>, <Rd>, <CRn>, <CRm>{, <op2>}

Move double to ARM reg
from coproc

MRRC2 <cp_num>, <opl>, <Rd>, <Rn>, <CRm>

Move double to coproc

MCRR2 <cp_num>, <opl>, <Rd>, <Rn>, <CRm>

from ARM reg
Load LDC2 <cp_num>, <CRd>, <a_mode5>
Store STC2 <cp_num>, <CRd>, <a_mode5>

SVC{cond} <immed_24>

Secure Monitor call

SMC{cond} <immed_16>

Software breakpoint

BKPT <immed_16>

Parallel add
/subtract

Signed add high 16 + 16,
low 16 + 16, set GE flags

SADD16{cond} <Rd>, <Rn>, <Rm>

Saturated add high 16 + 16,
low 16 + 16

QADD16{cond} <Rd>, <Rn>, <Rm>

Signed high 16 + 16, low 16 + 16,
halved

SHADD16{cond} <Rd>, <Rn>, <Rm>

Unsigned high 16 + 16, low 16 +
16, set GE flags

UADD16{cond} <Rd>, <Rn>, <Rm>

Saturated unsigned high 16 + 16,
low 16 + 16

UQADD16{cond} <Rd>, <Rn>, <Rm>

Unsigned high 16 + 16,
low 16 + 16, halved

UHADD16{cond} <Rd>, <Rn>, <Rm>

Signed high 16 + low 16,
low 16 - high 16, set GE flags

SADDSUBX{cond} <Rd>, <Rn>, <Rm>

Saturated high 16 + low 16,
low 16 - high 16

QADDSUBX{cond} <Rd>, <Rn>, <Rm>

Signed high 16 + low 16,
low 16 - high 16, halved

SHADDSUBX{cond} <Rd>, <Rn>, <Rm>

Unsigned high 16 + low 16,
low 16 - high 16, set GE flags

UADDSUBX{cond} <Rd>, <Rn>, <Rm>

Saturated unsigned
high 16 + low 16, low 16 - high 16

Unsigned high 16 + low 16,
low 16 - high 16, halved

UQADDSUBX{cond} <Rd>, <Rn>, <Rm>

UHADDSUBX{cond} <Rd>, <Rn>, <Rm>

Signed high 16 - low 16,
low 16 + high 16, set GE flags

SSUBADDX{cond} <Rd>, <Rn>, <Rm>

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 1-37
Non-Confidential, Unrestricted Access

Introduction

Table 1-7 ARM instruction set summary (continued)

Operation

Assembler

Saturated high 16 - low 16,
low 16 + high 16

QSUBADDX{cond} <Rd>, <Rn>, <Rm>

Signed high 16 - low 16,
low 16 + high 16, halved

SHSUBADDX{cond} <Rd>, <Rn>, <Rm>

Unsigned high 16 - low 16,
low 16 + high 16, set GE flags

USUBADDX{cond} <Rd>, <Rn>, <Rm>

Saturated unsigned
high 16 - low 16, low 16 + high 16

UQSUBADDX{cond} <Rd>, <Rn>, <Rm>

Unsigned high 16 - low 16,
low 16 + high 16, halved

UHSUBADDX{cond} <Rd>, <Rn>, <Rm>

Signed high 16-16, low 16-16,
set GE flags

SSUB16{cond} <Rd>, <Rn>, <Rm>

Saturated high 16 - 16, low 16 - 16

QSUB16{cond} <Rd>, <Rn>, <Rm>

Signed high 16 - 16, low 16 - 16,
halved

SHSUB16{cond} <Rd>, <Rn>, <Rm>

Unsigned high 16 - 16, low 16 - 16,
set GE flags

Saturated unsigned high 16 - 16,
low 16 - 16

USUB16{cond} <Rd>, <Rn>, <Rm>

UQSUB16{cond} <Rd>, <Rn>, <Rm>

Unsigned high 16 - 16, low 16 - 16,
halved

UHSUB16{cond} <Rd>, <Rn>, <Rm>

Four signed 8 + 8, set GE flags

SADD8{cond} <Rd>, <Rn>, <Rm>

Four saturated 8 + 8

Four signed 8 + 8, halved

QADD8{cond} <Rd>, <Rn>, <Rm>

SHADD8{cond} <Rd>, <Rn>, <Rm>

Four unsigned 8 + 8, set GE flags

UADD8{cond} <Rd>, <Rn>, <Rm>

Four saturated unsigned 8 + 8

UQADD8{cond} <Rd>, <Rn>, <Rm>

Four unsigned 8 + 8, halved

UHADD8{cond} <Rd>, <Rn>, <Rm>

Four signed 8 - 8, set GE flags

SSUB8{cond} <Rd>, <Rn>, <Rm>

Four saturated 8 - 8

Four signed 8 - 8, halved

QSuUB8{cond} <Rd>, <Rn>, <Rm>

SHSUB8{cond} <Rd>, <Rn>, <Rm>

Four unsigned 8 - 8

USUB8{cond} <Rd>, <Rn>, <Rm>

Four saturated unsigned 8 - 8

UQSUB8{cond} <Rd>, <Rn>, <Rm>

Four unsigned 8 - 8, halved

UHSUB8{cond} <Rd>, <Rn>, <Rm>

Sum of absolute differences

Sum of absolute differences and
accumulate

USAD8{cond} <Rd>, <Rm>, <Rs>

USADA8{cond} <Rd>, <Rm>, <Rs>, <Rn>

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 1-38
Non-Confidential, Unrestricted Access

Introduction

Table 1-7 ARM instruction set summary (continued)

Operation

Assembler

Sign/zero extend
and add

Two low 8/16, sign extend to 16 +
16

SXTAB16{cond} <Rd>, <Rn>, <Rm>{, <rotation>}

Low 8/32, sign extend to 32, + 32

SXTAB{cond} <Rd>, <Rn>, <Rm>{, <rotation>}

Low 16/32, sign extend to 32, + 32

SXTAH{cond} <Rd>, <Rn>, <Rm>{, <rotation>}

Two low 8/16, zero extend
to 16, + 16

UXTAB16{cond} <Rd>, <Rn>, <Rm>{, <rotation>}

Low 8/32, zero extend to 32, + 32

Low 16/32, zero extend to 32, + 32

UXTAB{cond} <Rd>, <Rn>, <Rm>{, <rotation>}

UXTAH{cond} <Rd>, <Rn>, <Rm>{, <rotation>}

Two low 8, sign extend to 16,
packed 32

SXTB16{cond} <Rd>, <Rm>{, <rotation>}

Low 8, sign extend to 32

SXTB{cond} <Rd>, <Rm>{, <rotation>}

Low 16, sign extend to 32

SXTH{cond} <Rd>, <Rm>{, <rotation>}

Two low 8, zero extend to 16,
packed 32

UXTB16{cond} <Rd>, <Rm>,{, <rotation>}

Low 8, zero extend to 32

UXTB{cond} <Rd>, <Rm>{, <rotation>}

Low 16, zero extend to 32

UXTH{cond} <Rd>, <Rm>{, <rotation>}

Signed multiply
and multiply,
accumulate

Signed
(high 16 x 16) + (low 16 x 16) + 32,
and set Q flag.

As SMLAD, but high x low,
low x high, and set Q flag

SMLAD{cond} <Rd>, <Rm>, <Rs>, <Rn>

SMLADX{cond} <Rd>, <Rm>, <Rs>, <Rn>

Signed
(high 16 x 16) - (low 16 x 16) + 32

SMLSD{cond} <Rd>, <Rm>, <Rs>, <Rn>

As SMLSD, but high x low,
low x high

Signed
(high 16 x 16) + (low 16 x 16) + 64

SMLSDX{cond} <Rd>, <Rm>, <Rs>, <Rn>

SMLALD{cond} <RdLo>, <RdHi>, <Rm>, <Rs>

As SMLALD, but high x low,
low x high

SMLALDX{cond} <RdLo>, <RdHi>, <Rm>, <Rs>

Signed
(high 16 x 16) - (low 16 x 16) + 64

As SMLSLD, but high x low,
low x high

SMLSLD{cond} <RdLo>, <RdHi>, <Rm>, <Rs>

SMLSLDX{cond} <RdLo>, <RdHi>, <Rm>, <Rs>

32 + truncated high 16 (32 x 32)

SMMLA{cond} <Rd>, <Rm>, <Rs>, <Rn>

32 + rounded high 16 (32 x 32)

SMMLAR{cond} <Rd>, <Rm>, <Rs>, <Rn>

32 - truncated high 16 (32 x 32)

32 -rounded high 16 (32 x 32)

SMMLS{cond} <Rd>, <Rm>, <Rs>, <Rn>

SMMLSR{cond} <Rd>, <Rm>, <Rs>, <Rn>

ARM DDI 0301H

Copyright © 2004-2009 ARM Limited. All rights reserved. 1-39
Non-Confidential, Unrestricted Access

Introduction

Table 1-7 ARM instruction set summary (continued)

Operation

Assembler

Saturate, select,
and pack

Signed (high 16 x 16) +
(low 16 x 16), and set Q flag

SMUAD{cond} <Rd>, <Rm>, <Rs>

As SMUAD, but high x low,
low x high, and set Q flag

SMUADX{cond} <Rd>, <Rm>, <Rs>

Signed (high 16 x 16) -
(low 16 x 16)

SMUSD{cond} <Rd>, <Rm>, <Rs>

As SMUSD, but high x low,
low x high

SMUSDX{cond} <Rd>, <Rm>, <Rs>

Truncated high 16 (32 x 32)

SMMUL{cond} <Rd>, <Rm>, <Rs>

Rounded high 16 (32 x 32)

SMMULR{cond} <Rd>, <Rm>, <Rs>

Unsigned 32 x 32, + two 32, to 64

Signed saturation at

bit position n

UMAAL{cond} <RdLo>, <RdHi>, <Rm>, <Rs>

SSAT{cond} <Rd>, #<immed_5>, <Rm>{, <shift>}

Unsigned saturation at
bit position n

USAT{cond} <Rd>, #<immed_5>, <Rm>{, <shift>}

Two 16 signed saturation at
bit position n

Two 16 unsigned saturation at

bit position n

SSAT16{cond} <Rd>, #<immed_4>, <Rm>

USAT16{cond} <Rd>, #<immed_4>, <Rm>

Select bytes from Rn/Rm based
on GE flags

SEL{cond} <Rd>, <Rn>, <Rm>

Pack low 16/32, high 16/32

PKHBT{cond} <Rd>, <Rn>, <Rm>{, LSL #<immed_5>}

Pack high 16/32, low 16/32

PKHTB{cond} <Rd>, <Rn>, <Rm>{, ASR #<immed_5>}

Table 1-8 summarizes addressing mode 2.

Table 1-8 Addressing mode 2

Addressing mode

Assembler

Offset -

Immediate offset [<Rn>, #+/<immed_12>]

Zero offset [<Rn>]

Register offset [<Rn>, +/-<Rm>]

Scaled register offset [<Rn>, +/-<Rm>, LSL #<immed_5>]
[<Rn>, +/-<Rm>, LSR #<immed_5>]

[<Rn>, +/-<Rm>, ASR #<immed_5>]

[<Rn>, +/-<Rm>, ROR #<immed_5>]

[<Rn>, +/-<Rm>, RRX]

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 1-40
Non-Confidential, Unrestricted Access

Introduction

Table 1-8 Addressing mode 2 (continued)

Addressing mode Assembler

Pre-indexed offset -

Immediate offset [<Rn>], #+/<immed_12>
Zero offset [<Rn>]
Register offset [<Rn>, +/-<Rm>]!

Scaled register offset [<Rn>, +/-<Rm>, LSL #<immed_5>]!

[<Rn>, +/-<Rm>, LSR #<immed_5>]!

[<Rn>, +/-<Rm>, ASR #<immed_5>]!

[<Rn>, +/-<Rm>, ROR #<immed_5>]!

[<Rn>, +/-<Rm>, RRX]!

Post-indexed offset -

Immediate [<Rn>], #+/-<immed_12>
Zero offset [<Rn>]
Register offset [<Rn>], +/-<Rm>

Scaled register offset ~ [<Rn>], +/-<Rm>, LSL #<immed_5>

[<Rn>], +/-<Rm>, LSR #<immed_5>

[<Rn>1, +/-<Rm>, ASR #<immed_5>

[<Rn>1, +/-<Rm>, ROR #<immed_5>

[<Rn>1, +/-<Rm>, RRX

Table 1-9 summarizes addressing mode 2P, post-indexed only.

Table 1-9 Addressing mode 2P, post-indexed only

Addressing mode Assembler

Post-indexed offset -

Immediate offset [<Rn>], #+/-<immed_12>
Zero offset [<Rn>]
Register offset [<Rn>], +/-<Rm>

Scaled register offset ~ [<Rn>], +/-<Rm>, LSL #<immed_5>

[<Rn>], +/-<Rm>, LSR #<immed_5>

[<Rn>], +/-<Rm>, ASR #<immed_5>

[<Rn>], +/-<Rm>, ROR #<immed_5>

[<Rn>], +/-<Rm>, RRX

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 1-41
Non-Confidential, Unrestricted Access

Introduction

Table 1-10 summarizes addressing mode 3.

Table 1-10 Addressing mode 3

Addressing mode Assembler

Immediate offset [<Rn>, #+/-<immed_8>]
Pre-indexed [<Rn>, #+/-<immed_8>]!
Post-indexed [<Rn>], #+/-<immed_8>

Register offset [<Rn>, +/- <Rm>]
Pre-indexed [<Rn>, +/- <Rm>]!
Post-indexed [<Rn>], +/- <Rm>

Table 1-11 summarizes addressing mode 4.

Table 1-11 Addressing mode 4

Addressing mode Stack type

Block load Stack pop (LDM, RFE)

IA Increment after FD Full descending

IB Increment before E Empty descending
D

DA Decrement after FA Full ascending

DB Decrement before E Empty ascending
A

Block store Stack push (STM, SRS)

IA IA Increment after E Empty ascending
A

1B IB Increment before FA Full ascending

DA DA Decrement after E Empty descending
D

DB DB Decrement before FD Full descending

Table 1-12 summarizes addressing mode 5.

Table 112 Addressing mode 5

Addressing mode Assembler

Immediate offset [<Rn>, #+/-<immed_8+4>]

Immediate pre-indexed [<Rn>, #+/-<immed_8x4>]!
Immediate pre-indexed [<Rn>], #+/-<immed_8x4>

Unindexed [<Rn>], <option>

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 1-42
ID012310 Non-Confidential, Unrestricted Access

Introduction

Table 1-13 summarizes Operand2 assembler.

Table 1-13 Operand2

Operation Assembler
Immediate value #<immed_8r>
Logical shift left <Rm> LSL #<immed_5>
Logical shift right <Rm> LSR #<immed_5>

Arithmetic shift right ~ <Rm> ASR #<immed_5>

Rotate right <Rm> ROR #<immed_5>
Register <Rm>

Logical shift left <Rm> LSL <Rs>
Logical shift right <Rm> LSR <Rs>

Arithmetic shift right ~ <Rm> ASR <Rs>

Rotate right <Rm> ROR <Rs>

Rotate right extended ~ <Rm> RRX

Table 1-14 summarizes the MSR instruction fields.

Table 1-14 Fields

Suffix Sets this bit in the MSR field_mask MSR instruction bit number

C Control field mask bit, bit 0 16
X Extension field mask bit, bit 1 17
s Status field mask bit, bit 2 18
f Flags field mask bit, bit 3 19

Table 1-15 summarizes condition codes.

Table 1-15 Condition codes

Suffix Description

EQ Equal

NE Not equal

HS/CS Unsigned higher or same, carry set

Lo/ccC Unsigned lower, carry clear

MI Negative, minus
PL Positive or zero, plus
VS Overflow
VC No overflow
HI Unsigned higher
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 1-43

ID012310 Non-Confidential, Unrestricted Access

Introduction

Table 1-15 Condition codes (continued)

Suffix Description

LS Unsigned lower or same
GE Signed greater or equal
LT Signed less than

GT Signed greater than

LE Signed less than or equal
AL Always

1.10.2 Thumb instruction set summary

Table 1-16 summarizes the Thumb instruction set.

Table 1-16 Thumb instruction set summary

Operation Assembler

Move Immediate, update flags MOV <Rd>, #<immed_8>
LowReg to LowReg, update flags MOV <Rd>, <Rm>
HighReg to LowReg MOV <Rd>, <Rm>
LowReg to HighReg MOV <Rd>, <Rm>
HighReg to HighReg MOV <Rd>, <Rm>
Copy CPY <Rd>, <Rm>

Arithmetic Add ADD <Rd>, <Rn>, #<immed_3>
Add immediate ADD <Rd>, #<immed_8>
Add LowReg and LowReg, update flags ADD <Rd>, <Rn>, <Rm>
Add HighReg to LowReg ADD <Rd>, <Rm>
Add LowReg to HighReg ADD <Rd>, <Rm>
Add HighReg to HighReg ADD <Rd>, <Rm>
Add immediate to PC ADD <Rd>, PC, #<immed_8x4>
Add immediate to SP ADD <Rd>, SP, #<immed_8+«4>
Add immediate to SP ADD SP, #<immed_7:«4>

ADD SP, SP, #<immed_7:4>
Add with carry ADC <Rd>, <Rs>
Subtract immediate SUB <Rd>, <Rn>, #<immed_3>
Subtract immediate SUB <Rd>, #<immed_8>
Subtract SUB <Rd>, <Rn>, <Rm>
Subtract immediate from SP SUB SP, #<immed_7:4>
Subtract with carry SBC <Rd>, <Rm>
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 1-44

ID012310

Non-Confidential, Unrestricted Access

Introduction

Table 1-16 Thumb instruction set summary (continued)

Operation Assembler
Negate NEG <Rd>, <Rm>
Multiply MUL <Rd>, <Rm>
Compare Compare immediate CMP <Rn>, #<immed_8>
Compare LowReg and LowReg, update flags CMP <Rn>, <Rm>
Compare LowReg and HighReg, update flags ~ CMP <Rn>, <Rm>
Compare HighReg and LowReg, update flags ~ CMP <Rn>, <Rm>
Compare HighReg and HighReg, update flags ~ CMP <Rn>, <Rm>
Compare negative CMN <Rn>, <Rm>
Logical AND AND <Rd>, <Rm>
XOR EOR <Rd>, <Rm>
OR ORR <Rd>, <Rm>
Bit clear BIC <Rd>, <Rm>
Move NOT MVN <Rd>, <Rm>
Test bits TST <Rd>, <Rm>
Shift/Rotate Logical shift left LSL <Rd>, <Rm>, #<immed_5>
LSL <Rd>, <Rs>
Logical shift right LSR <Rd>, <Rm>, #<immed_5>
LSR <Rd>, <Rs>
Arithmetic shift right ASR <Rd>, <Rm>, #<immed_5>
ASR <Rd>, <Rs>
Rotate right ROR <Rd>, <Rs>
Branch Conditional B{cond} <label>
Unconditional B <label>
Branch with link BL <label>
Branch, link and exchange BLX <label>
Branch, link and exchange BLX <Rm>
Branch and exchange BX <Rm>
Load With immediate offset -

Word LDR <Rd>, [<Rn>, #<immed_5«4>]

Halfword LDRH <Rd>, [<Rn>, #<immed_5:2>]

Byte LDRB <Rd>, [<Rn>, #<immed_5>]
With register offset -

Word LDR <Rd>, [<Rn>, <Rm>]

Halfword LDRH <Rd>, [<Rn>, <Rm>]

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved.
Non-Confidential, Unrestricted Access

1-45

Introduction

Table 1-16 Thumb instruction set summary (continued)

Operation Assembler
Signed halfword LDRSH <Rd>, [<Rn>, <Rm>]
Byte LDRB <Rd>, [<Rn>, <Rm>]
Signed byte LDRSB <Rd>, [<Rn>, <Rm>]
PC-relative LDR <Rd>, [PC, #<immed_8+«4>]
SP-relative LDR <Rd>, [SP, #<immed_8+«4>]
Multiple LDMIA <Rn>!, <reglist>

Store With immediate offset -
Word STR <Rd>, [<Rn>, #<immed_5:4>]
Halfword STRH <Rd>, [<Rn>, #<immed_5:2>]
Byte STRB <Rd>, [<Rn>, #<immed_5>]

With register offset -

Word STR <Rd>, [<Rn>, <Rm>]
Halfword STRH <Rd>, [<Rn>, <Rm>]
Byte STRB <Rd>, [<Rn>, <Rm>]
SP-relative STR <Rd>, [SP, #<immed_8x4>]
Multiple STMIA <Rn>!, <reglist>

Push/Pop Push registers onto stack PUSH <reglist>

Push LR and registers onto stack

PUSH <reglist, LR>

Pop registers from stack

POP <reglist>

Pop registers and PC from stack

POP <reglist, PC>

Change state

Change processor state

CPS <effect> <iflags>

Change endianness

SETEND <endian_specifier>

Byte-reverse

Byte-reverse word

Byte-reverse halfword

REV <Rd>, <Rm>

REV16 <Rd>, <Rm>

Byte-reverse signed halfword

REVSH <Rd>, <Rm>

Supervisor call

SVC <immed_8>

Software breakpoint

BKPT <immed_8>

Sign or zero extend

Sign extend 16 to 32
Sign extend 8 to 32

Zero extend 16 to 32

SXTH<Rd>, <Rm>
SXTB<Rd>, <Rm>

UXTH<Rd>, <Rm>

Zero extend 8 to 32

UXTB<Rd>, <Rm>

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved.
Non-Confidential, Unrestricted Access

1-46

Introduction

1.11 Product revisions

This section describes differences in functionality between product revisions of the
ARMI1176JZF-S processor:

rOp0-rOpl Contains the following differences:

. The addition of the CPUCLAMP input in rOp1 to better support IEM. See
Intelligent Energy Management on page 10-7.

. The top level RTL hierarchy has been changed in rOp1 to better support
IEM. See Intelligent Energy Management on page 10-7.

. The architectural clock gating scheme for the generation of clock dedicated
to the RAMs has been changed. For more information see the description
of the RAM interface implementation in the ARM1176JZF-S™ and
ARM1176JZ-8" Implementation Guide.

rOpl-rOp2 There are no functional differences between rOp1 and rOp2.
r0p2-r0p4 There are no functional differences between rOp2 and rOp4.

rOp4-rOp6 Between rOp4 and rOp6 there are no differences in the functionality described in
this Technical Reference Manual. However, rOp6 introduces optional top-level
latches, for implementing Dormant mode or IEM with cell libraries that do not
provide retention latches. For more information see the description of Dormant
mode implementation in the ARM1176JZF-S™ and ARM1176JZ-S™
Implementation Guide.

r0p6-r0p7 There are no functional differences between rOp6 and rOp7.

Note
Product revisions r0p3 and rOpS were not generally available.

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 1-47
ID012310 Non-Confidential, Unrestricted Access

Chapter 2
Programmer’s Model

This chapter describes the processor registers and provides information for programming the
microprocessor. It contains the following sections:

. About the programmer’s model on page 2-2
. Secure world and Non-secure world operation with TrustZone on page 2-3
. Processor operating states on page 2-12

. Instruction length on page 2-13

. Data types on page 2-14

. Memory formats on page 2-15

. Addresses in a processor system on page 2-16
. Operating modes on page 2-17

. Registers on page 2-18

. The program status registers on page 2-24

. Additional instructions on page 2-30

. Exceptions on page 2-36

. Software considerations on page 2-59.

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved.
ID012310 Non-Confidential, Unrestricted Access

Programmer’s Model

2.1 About the programmer’s model

The ARM1176JZF-S processors implement ARM architecture v6 with Java extensions and
TrustZone™ security extensions.

The architecture includes the 32-bit ARM instruction set, 16-bit Thumb instruction set, and the
8-bit Java instruction set. For details of both the ARM and Thumb instruction sets, see the ARM
Architecture Reference Manual. For the Java instruction set see the Jazelle V1 Architecture
Reference Manual.

TrustZone provides Secure and Non-secure worlds for software to operate in. For more details
see Secure world and Non-secure world operation with TrustZone on page 2-3 and the ARM
Architecture Reference Manual.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 2-2
Non-Confidential, Unrestricted Access

Programmer’s Model

2.2 Secure world and Non-secure world operation with TrustZone

This section describes;
. TrustZone model
. How the Secure model works on page 2-4.

For more details on TrustZone and the ARM architecture, see the ARM Architecture Reference
Manual.

2.21 TrustZone model

The basis of the TrustZone model is that the computing environment splits into two isolated
worlds, the Secure world and the Non-secure world, with no leakage of Secure data to the
Non-secure world. Software Secure Monitor code, running in the Secure Monitor Mode, links
the two worlds and acts as a gatekeeper to manage program flow. The system can have both
Secure and Non-secure peripherals that suitable Secure and Non-secure device drivers control.
Figure 2-1 shows the relationship between the Secure and Non-secure worlds. The Operating
System (OS) splits into the Secure OS, that includes the Secure kernel, and the Non-secure OS,
that includes the Non-secure kernel. For details on modes of operation, see Operating modes on

page 2-17.
Non-secure Secure
(T 1
P
Fixed entry Fixed entry

@ points points

© Ll .

g Monitor

© £ A4

> ~_

%’ Non-secure Secure

= kernel kernel

o A

A A
Secure ™ Secure
device driver (¢ device

% A A 4

o

E Non-secure Secure

2 application tasks

=}

N—

Figure 2-1 Secure and Non-secure worlds

In normal Non-secure operation the OS runs tasks in the usual way. When a User process
requires Secure execution it makes a request to the Non-secure kernel, that operates in privileged
mode, and this calls the Secure Monitor to transfer execution to the Secure world.

This approach to secure systems means that the platform OS, that works in the Non-secure
world, has only a few fixed entry points into the Secure world through the Secure Monitor. The
trusted code base for the Secure world, that includes the Secure kernel and Secure device
drivers, is small and therefore much easier to maintain and verify.

Note

Software that runs in User mode cannot directly switch the world that it operates in. Changes
from one world to the other can only occur through the Secure Monitor mode.

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 2-3
ID012310 Non-Confidential, Unrestricted Access

Programmer’s Model

2.2.2 How the Secure model works

This section describes how the Secure model works from a program perspective and includes:
. The NS bit and Secure Monitor mode

. Secure memory management on page 2-5
. System boot sequence on page 2-8

. Secure interrupts on page 2-8

. Secure peripherals on page 2-8

. Secure debug on page 2-9.

The NS bit and Secure Monitor mode

The Non-secure (NS) bit determines if the program execution is in the Secure or Non-secure
world. The NS bit is in the Secure Configuration Register (SCR) in coprocessor CP15, see ¢/,
Secure Configuration Register on page 3-52. All the modes of the core, except the Secure
Monitor, can operate in either the Secure or Non-secure worlds, so there are both Secure and
Non-secure User modes and Secure and Non-secure privileged modes, see Operating modes on
page 2-17 and Registers on page 2-18.

Note
An attempt to access the SCR directly in User modes, Secure or Non-secure, or in Non-secure
privileged modes, makes the processor enter the Undefined exception trap. SCR can only be
accessed in Secure privileged modes.

Secure Monitor mode is a privileged mode and is always Secure regardless of the state of the
NS bit. The Secure Monitor is code that runs in Secure Monitor mode and processes switches
to and from the Secure world. The overall security of the software relies on the security of this
code along with the Secure boot code.

When the Secure Monitor transfers control from one world to the other it must save the
processor context, that includes register banks, from one world and restore those for the other
world. The processor hardware automatically shadows and changes context information in
CP15 registers appropriately.

If the Secure Monitor determines that a change from one world to the other is valid it writes to
the NS bit to change the world in operation. Although all Secure privileged modes can access
the NS bit, it is strongly recommended that you only use the Secure Monitor to change the NS
bit. See the ARM Architecture Reference Manual for more information.

A Secure Monitor Call (SMC) is used to enter the Secure Monitor mode and perform a Secure
Monitor kernel service call. This instruction can only be executed in privileged modes, so when
a User process wants to request a change from one world to the other it must first execute a SVC
instruction. This changes the processor to a privileged mode where the Supervisor call handler
processes the SVC and executes a SMC, see Exceptions on page 2-36.

Note

An attempt by a User process to execute an SMC makes the processor enter the Undefined
exception trap.

The Secure Monitor mode is responsible for the switch from one world to the other. You must
only modify the SCR in Secure Monitor mode.

The recommended way to return to the Non-secure world is to:
1. Set the NS bit in the SCR.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 2-4
Non-Confidential, Unrestricted Access

Programmer’s Model

2. Execute a MOVS, SUBS or RFE.

All ARM implementations ensure that the processor can not execute the prefetched instructions
that follow MOVS, SUBS, or equivalents, with Secure access permissions.

It is strongly recommended that you do not use an MSR instruction to switch from the Secure
to the Non-secure world. There is no guarantee that, after the NS bit is set in Secure Monitor
mode, an MSR instruction avoids execution of prefetched instructions with Secure access
permission. This is because the processor prefetches the instructions that follow the MSR with
Secure privileged permissions and this might form a security hole in the system if the prefetched
instructions then execute in the Non-secure world.

If the prefetched instructions are in Non-secure memory, with the MSR at the boundary between
Secure and Non-secure memory, they might be corrupted to give Secure information to the
Non-secure world.

To avoid this problem with the MSR instruction, you can use an IMB sequence shortly after the
MSR. If you use the IMB sequence you must ensure that the instructions that execute after the
MSR and before the IMB do not leak any information to the Non-secure world and do not rely
on the Secure permission level.

It is strongly recommended that you do not set the NS bit in Privileged modes other than in
Secure Monitor mode. If you do so you face the same problem as a return to the Non-secure
world with the MSR instruction.

Note
To avoid leakage after an MSR instruction use an IMB sequence.

To enter the Secure Monitor the processor executes:

SMC {<cond>} <imml6>

Where:
<cond> Is the condition when the processor executes the SMC
<imm16> The processor ignores this 16-bit immediate value, but the Secure Monitor can

use it to determine the service to provide.
To return from the Secure Monitor the processor executes:

MOVS PC, R14_mon

Secure memory management

The principle of TrustZone memory management is to partition the physical memory into
Secure and Non-secure regions. The Secure protection is ensured by checking all physical
access to memory or peripherals. There are various means to split the global physical memory
into Secure and Non-secure regions. This can be done at each slave level, in the memory
controller, or in a global module, for example. The partition can be hard-wired or configurable.
All systems can have specific requirements, but the partitioning must be done so that any
Non-secure access to Secure memory or device causes an external abort to the core, a security
violation. An AXI signal AXPROT]|1] indicates whether the current access is Secure or not and
is used to check the access.

The Secure information exists at any stage of the memory management to guarantee the integrity
of data:

. at L.2 stage, you can split the memory mapping into Secure and Non-secure regions

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 2-5
Non-Confidential, Unrestricted Access

Programmer’s Model

in the MMU, Secure and Non-secure descriptors can coexist and they are differentiated
by the NSTID.

In the descriptors the NS attribute indicates whether the corresponding physical memory is
Secure or Non-secure.

For Non-secure descriptors, marked with NSTID=Non-secure, NS attribute is forced to
Non-secure value. The Non-secure world can only target Non-secure memory.

For Secure descriptor, marked with NSTID=Secure, NS attribute indicates if the physical
memory targets Secure or Non-secure memory:

In the caches, instruction and data, each line is tagged as Secure or Non-secure, so that Secure
and Non-secure data can coexist in the cache. Each time a cache line fill is performed, the NS
tag is updated appropriately.

For external accesses, AXPROT]1] indicates whether the access is Secure or Non-secure.

The TrustZone security extensions are completely compatible with existing software. This
means that existing applications and operating systems access memory without change. Where
a system employs Secure functionality the Non-secure world is effectively blind to Secure
memory. This means that Secure and Non-secure memory can co-exist with no affect on
Non-secure code.

Figure 2-2 shows the basic connection of the Secure and Non-secure memory.

Core <
Data
Abo rt“ Core world
y State
Address
MMU NSTID
NS attrlbute\ &
Descriptor 1 S| S
P (Descriptor 2 NS|NS
Cache TCM
Line 1
Descriptor (n-1) NS|NS Line 1 S L::Z 5
Descriptor (n) |NS| S P |Line 2 NS| =
A - -
Line(n-1) |NS Line(n-1)
Page Line (n) S Line(n)
table NS access bit
walk A A
Data Data
\ 4 \ 4 \ 4 \ 4 \ 4 \ 4 v
AXl interface
A
Address Abort 4 [AxPROTI[1] 1
® ® °® ®
Control \
® YU g ® ® ® ®
Data
®
Abort I,, AxPROT[1] Abort I,, AxPROTI[1] I I
S prot S prot
Non- Master
External Secure secure Arbiter | Decoder erioheral
memory slave slave perip

Figure 2-2 Memory in the Secure and Non-secure worlds

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 2-6

Non-Confidential, Unrestricted Access

Programmer’s Model

The virtual memory address map for the Secure and Non-secure worlds appear as separate
blocks. Figure 2-3 shows how the Secure and Non-secure virtual address spaces might map onto
the physical address space. In this example:

. Non-secure descriptors are stored in Non-secure memory and can only target Non-secure
memory
. Secure descriptors are stored in Secure memory and can target both Secure and

Non-secure memory.

Non-secure level 1
descriptors

SR

Physical memory

Non-secure translation -
table base address Non-secure level
1 descriptors \ 1MB sections
Non-secure —
Virtual memory 4KB non-secure
4KB non-secure 2
- o
L a Non-secure level 2
4KB non-secure g descriptors
4KB non-secure 5 r—/ﬁ
4KB secure @
4KB secure g
4KB secure . 4KB small pages
Secure translation |
table base address "I secure level 1 Secure level 1
descriptors descriptors NS
r—/ﬁ attribute
1MB sections
Non-secure
SDRAM
Secure Secure level 2
peripherals descriptors
Non-secure
peripherals 4KB small pages
Pl
g
(0]
=y}
§ IS
»g
E
>

Figure 2-3 Memory partition in the Secure and Non-secure worlds

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 2-7
ID012310 Non-Confidential, Unrestricted Access

Programmer’s Model

System boot sequence

——— Caution

TrustZone security extensions enable a Secure software environment. The technology does not
protect the processor from hardware attacks and the implementor must make sure that the
hardware that contains the boot code is appropriately secure.

The processor always boots in the privileged Supervisor mode in the Secure world, that is the
NS bit is 0. This means that code not written for TrustZone always runs in the Secure world, but
has no way to switch to the Non-secure world. Because the Secure and Non-secure worlds
mirror each other this Secure operation does not affect the functionality of code not written for
TrustZone. The processor is therefore compatible with other ARMV6 architectures. Peripherals
boot in their most Secure state.

The Secure OS code at the reset vector must:

1. Initialize the Secure OS. This includes normal boot actions such as:
a. Generate page tables and switch on the MMU if the design uses caches or memory
protection.

b. Switch on the stack.

c. Set up the run time environment and program stacks for each processor mode.

2. Initialize the Secure Monitor. This includes such actions as:

a. Allocate TCM memory for the Secure Monitor code.

b. Allocate scratch work space.
c. Set up the Secure Monitor stack pointer and initialize its state block.

3. Program the partition checker to allocate physical memory available to the Non-secure
OS.

4. Yield control to the Non-secure OS. The Non-secure OS boots after this.

The overall security of the software relies on the security of the boot code along with the code
for the Secure Monitor.

Secure interrupts

There are no new pins to deal with Secure interrupts. However the IRQ and FIQ bits in the SCR
can be set to 1, so that the core branches to Secure Monitor mode, instead of IRQ or FIQ mode,
when an interrupt occurs. For more information see c/, Secure Configuration Register on
page 3-52.

FIQ can be used to enter the Secure world in a deterministic way, if it is configured as NMI when
the core is in the Non-secure world,. This configuration is done using the FW and FIQ bits in
SCR. The nIRQ pin can also be used as Secure interrupt and can enter directly monitor mode,
if the IRQ bit in the SCR is set to 1. But it might be masked in the Non-secure world if the I bit
in the CPSR is set to 1.

Secure peripherals

You can protect a Secure peripheral by mapping it to a Secure memory region. In addition, you
can protect Secure peripherals by checking the AXPROT][1] signal and generating an error
response if a Non-secure access attempts to read or write a Secure register.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 2-8
Non-Confidential, Unrestricted Access

Programmer’s Model

Secure peripherals require Secure device drivers to supervise them. To minimize the effects of
drivers on system security it is recommended that the Secure device drivers run in the Secure
User mode so that they cannot change the NS bit directly.

Secure debug

For details of software debug in Secure systems see, Chapter 13 Debug. Because the processor
boots in Secure mode you might have to make special arrangements to debug code not written
for TrustZone.

TrustZone write access disable

The processor pin CP1SSDISABLE disables write access to certain registers in the system
control coprocessor. Table 2-1 lists the registers affected by this pin.

Attempts to write to the registers in Table 2-1 when CP15SSDISABLE is HIGH result in an
Undefined exception. Reads from the registers are still permitted. For more information about
the registers, see Chapter 3 System Control Coprocessor.

A change to the CP15SDISABLE pin takes effect on the instructions decoded by the processor
as quickly as practically possible. Software must perform a Prefetch Flush CP15 operation, after
a change to this pin on the boundary of the macrocell, to ensure that its effect is recognized for
following instructions. It it is expected that:

. control of the CP15SSDISABLE pin remains within the SoC that embodies the macrocell
. the CP15SDISABLE pin is set to logic 0 by the SoC hardware at reset.

You can use the CP15SDISABLE pin to disable subsequent access to system control processor
registers after the Secure boot code runs and protect the configuration that the Secure boot code
applies.

Note

With the exception of the TCM Region Registers, the registers in Table 2-1 are only accessible
in Secure Privileged modes.

Table 2-1 Write access behavior for system control processor registers

Instruction that is Undefined

when CP15SDISABLE=1 Security Condition

Secure Control Register MCR p15, 0, Rd, cl1, c0, 0 Secure Monitor or Privileged when NS=0
Secure Translation Table Base MCR p15, 0, Rd, c2, c0, 0 Secure Monitor or Privileged when NS=0
Register 0
Secure Translation Table Control MCR p15, 0, Rd, c2, c0, 2 Secure Monitor or Privileged when NS=0
Register
Secure Domain Access Control MCR p15, 0, Rd, c3, <0, 0 Secure Monitor or Privileged when NS=0
Register
Data TCM Non-secure Control MCR p15, 0, Rd, c9, c1, 2 Secure Monitor or Privileged when NS=0
Access Register

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 2-9

ID012310

Non-Confidential, Unrestricted Access

224

Programmer’s Model

Table 2-1 Write access behavior for system control processor registers (continued)

Instruction that is Undefined

Register when CP15SDISABLE=1 Security Condition

Instruction/Unified TCM MCR p15, 0, Rd, 9, cl, 3 Secure Monitor or Privileged when NS=0

Non-secure Control Access

Register

Data TCM Region Registers MCR p15, @, Rd, c9, c1, 0 All TCM Base Registers for which the
Data TCM Non-secure Control Access
Register = 0

Instruction/Unified TCM Region MCR p15, @, Rd, 9, c1, 1 All TCM Base Registers for which the

Registers Instruction/Unified TCM Non-secure
Control Access Register = 0

Secure Primary Region Remap MCR pl15, @, Rd, cl0, c2, @ Secure Monitor or Privileged when NS=0

Register

Secure Normal Memory Remap MCR pl15, @, Rd, cl0, c2, 1 Secure Monitor or Privileged when NS=0

Register

Secure Vector Base Register MCR pl15, @, Rd, cl12, c0, @ Secure Monitor or Privileged when NS=0

Monitor Vector Base Register MCR p15, @, Rd, cl12, c0, 1 Secure Monitor or Privileged when NS=0

Secure FCSE Register MCR p15, @, Rd, c13, c0, 0 Secure Monitor or Privileged when NS=0

Peripheral Port remap Register MCR p15, 0, Rd, c15, c2, 4 Secure Monitor or Privileged when NS=0

Instruction Cache master valid MCR p15, 3, Rd, c15, c8, {0-7} Secure Monitor or Privileged when NS=0

register

Data Cache master valid register MCR p15, 3, Rd, c15, cl12, {0-7} Secure Monitor or Privileged when NS=0

TLB lockdown Index register MCR p15, 5, Rd, c15, c4, 2 Secure Monitor or Privileged when NS=0

TLB lockdown VA register MCR p15, 5, Rd, c15, c5, 2 Secure Monitor or Privileged when NS=0

TLB lockdown PA register MCR p15, 5, Rd, c15, c6, 2 Secure Monitor or Privileged when NS=0

TLB lockdown Attribute register MCR p15, 5, Rd, c15, c7, 2 Secure Monitor or Privileged when NS=0

Validation registers MCR p15, 0, Rd, c15, c9, 0 Secure Monitor or Privileged when NS=0

MCR p15, @, Rd, c15, c12, {4-7}
MCR p15, @, Rd, cl5, cl4, 0
MCR p15, {0-7}, Rd, c15, c13, {0-7}

Secure Monitor bus

The SECMONBUS exports a set of signals from the core for use in a monitoring block inside
the chip.

——— Caution

Implementors must ensure that the SECMONBUS signals do not compromise the security of
the processor. The signals provide information for a security monitoring block, that is inside the
SoC, and must not appear outside the chip.

Table 2-2 on page 2-11 lists the signals that appear on the Secure Monitor bus SECMONBUS.

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 2-10

ID012310

Non-Confidential, Unrestricted Access

Programmer’s Model

Table 2-2 Secure Monitor bus signals

Bits Description
[24]2 ETMIACTL[11] unmodified by Non-invasive security enable masking.
This signal is disabled when ETMPWRUP = 0 and the Performance Monitoring counters are disabled.
[23]2 ETMIACTL[9] unmodified by Non-invasive security enable masking.
This signal is disabled when ETMPWRUP = 0 and the Performance Monitoring counters are disabled.
[22] Signal that indicates, for duration of operation, the execution of a DMB or DSB operation.
[21] Signal that indicates, for 1 cycle, the execution of a Prefetch Flush operation.
[20:19] Instruction/Unified TCM Region Register bit[0], entries [1:0].
[18:17] Data TCM Region Register bit [0], entries [1:0].
[16] Non-secure Access Control register bit [18].
[15] Secure Control Register I bit, bit [12].
[14] Secure Control Register C bit, bit [2].
[13] Secure Control Register M bit, bit [0].
[12] Secure Configuration Register NS bit, bit [0].
[11] CPSR A bit, bit [8], taken from the core pipeline writeback stage.
[10] CPSR 1 bit, bit [7], taken from the core pipeline writeback stage.
[9] CPSR F bit, bit [6], taken from the core pipeline writeback stage.
[8:5] CPSR mode bits, bits [3:0], taken from the core pipeline writeback stage.
[4:3] ETMDDCTL[1:0] unmodified by Non-invasive security enable masking.
This signal is disabled when ETMPWRUP = 0 and the Performance Monitoring counters are disabled.
[2:1]2 ETMDACTL][1:0] unmodified by Non-invasive security enable masking.
This signal is disabled when ETMPWRUP = 0 and the Performance Monitoring counters are disabled.
[0]2 ETMIACTL][0] unmodified by Non-invasive security enable masking.

This signal is disabled when ETMPWRUP = 0 and the Performance Monitoring counters are disabled.

a. nRESETIN resets all SECMONBUS output pins except bits [24:23] and bits [2:0].
nPORESETIN resets the output pins for bits [24:23] and bits [2:0].

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 2-11
Non-Confidential, Unrestricted Access

Programmer’s Model

23 Processor operating states

2.31 Switching state

The processor has these operating states:

ARM state 32-bit, word-aligned ARM instructions are executed in this state.
Thumb state 16-bit, halfword-aligned Thumb instructions.
Jazelle state Variable length, byte-aligned Java instructions.

In Thumb state, the Program Counter (PC) uses bit 1 to select between alternate halfwords. In
Jazelle state, all instruction fetches are in words.

Note
Transition between ARM and Thumb states does not affect the processor mode or the register
contents. For details on entering and exiting Jazelle state see Jazelle VI Architecture Reference
Manual.

You can switch the operating state of the processor between:

. ARM state and Thumb state using the BX and BLX instructions, and loads to the PC. The
ARM Architecture Reference Manual describes the switching state.

. ARM state and Jazelle state using the BXJ instruction.

All exceptions are entered, handled, and exited in ARM state. If an exception occurs in Thumb
state or Jazelle state, the processor reverts to ARM state. Exception return instructions restore
the SPSR to the CPSR, that can also cause a transition back to Thumb state or Jazelle state.

2.3.2 Interworking ARM and Thumb state

The processor enables you to mix ARM and Thumb code. For details see the chapter about
interworking ARM and Thumb in the RealView Compilation Tools Developer Guide.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 2-12
Non-Confidential, Unrestricted Access

Programmer’s Model

24 Instruction length

Instructions are one of:

. 32 bits long, in ARM state

. 16 bits long, in Thumb state

. variable length, multiples of 8 bits, in Jazelle state.

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 2-13
ID012310 Non-Confidential, Unrestricted Access

25 Data types

Programmer’s Model

The processor supports the following data types:
. word, 32-bit
. halfword, 16-bit

. byte, 8-bit.
Note
. When any of these types are described as unsigned, the N-bit data value represents a

non-negative integer in the range 0 to +2N-1, using normal binary format.

. When any of these types are described as signed, the N-bit data value represents an integer
in the range -2N-1 to +2N-1-1, using two’s complement format.

For best performance you must align these as follows:

. word quantities must be aligned to four-byte boundaries
. halfword quantities must be aligned to two-byte boundaries
. byte quantities can be placed on any byte boundary.

The processor provides mixed-endian and unaligned access support. For details see Chapter 4
Unaligned and Mixed-endian Data Access Support.

Note

You cannot use LDRD, LDM, LDC, STRD, STM, or STC instructions to access 32-bit
quantities if they are unaligned.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 2-14
Non-Confidential, Unrestricted Access

2.6

2.6.1

2.6.2

Programmer’s Model

Memory formats

The processor views memory as a linear collection of bytes numbered in ascending order from
zero. Bytes 0-3 hold the first stored word, and bytes 4-7 hold the second stored word, for
example.

The processor can treat words in memory as being stored in either:
. Legacy big-endian format
. Little-endian format.

Additionally, the processor supports mixed-endian and unaligned data accesses. For details see
Chapter 4 Unaligned and Mixed-endian Data Access Support.
Legacy big-endian format

In legacy big-endian format, the processor stores the most significant byte of a word at the
lowest-numbered byte, and the least significant byte at the highest-numbered byte. Therefore,
byte O of the memory system connects to data lines 31-24. Figure 2-4 shows this.

Bit 31 24 23 16 15 8 7 0 Word address
Higher address 8 9 10 11 8
4 5 6 7 4
Lower address 0 1 2 3 0

» Most significant byte is at lowest address
» Word is addressed by byte address of most significant byte

Figure 2-4 Big-endian addresses of bytes within words

Little-endian format

In little-endian format, the lowest-numbered byte in a word is the least significant byte of the
word and the highest-numbered byte is the most significant. Therefore, byte O of the memory
system connects to data lines 7-0. Figure 2-5 shows this.

Bit 31 24 23 16 15 8 7 0 Word address
Higher address 11 10 9 8 8
7 6 5 4 4
Lower address 3 2 1 0 0

« Least significant byte is at lowest address
» Word is addressed by byte address of least significant byte

Figure 2-5 Little-endian addresses of bytes within words

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved.
Non-Confidential, Unrestricted Access

2-15

Programmer’s Model

2.7 Addresses in a processor system

Three distinct types of address exist in the processor system:
. Virtual Address (VA)

. Modified Virtual Address (MVA)

. Physical Address (PA).

When the core is in the Secure world the VA is Secure, and when the core is in the Non-secure
world the VA is Non-secure. To get the VA to PA translation, the core uses Secure pages tables
while it is in Secure world. Otherwise it uses the Non-secure page tables.

Table 2-3 lists the address types in the processor system.

Table 2-3 Address types in the processor system

Caches TLBs AXI bus

Virtual Address Virtual index Physical tag ~ Translates Virtual Address to Physical Address Physical Address

This is an example of the address manipulation that occurs when the processor requests an
instruction, see Figure 1-1 on page 1-8:

1. The VA of the instruction is issued by the processor, Secure or Non-secure VA according
to the world where the core is.

2. The Instruction Cache is indexed by the lower bits of the VA. The VA is translated using
the ProclID, Secure or Non-secure one, to the MVA, and then to PA in the Translation
Lookaside Buffer (TLB). The TLB performs the translation in parallel with the Cache
lookup. The translation uses Secure descriptors if the core is in Secure world. Otherwise
it uses the Non-secure ones.

3. If the protection check carried out by the TLB on the MVA does not abort and the PA tag
is in the Instruction Cache, the instruction data is returned to the processor.

4. The PA is passed to the AXI bus interface to perform an external access, in the event of a
cache miss. The external access is always Non-secure when the core is in Non-secure
world. In Secure world, the external access is Secure or Non-secure according to the NS
attribute value in the selected descriptor.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 2-16
Non-Confidential, Unrestricted Access

Programmer’s Model

2.8 Operating modes

In all states there are eight modes of operation:

User mode is the usual ARM program execution state, and is used for executing most
application programs

Fast interrupt (FIQ) mode is used for handling fast interrupts

Interrupt (IRQ) mode is used for general-purpose interrupt handling
Supervisor mode is a protected mode for the OS

Abort mode is entered after a data abort or prefetch abort

System mode is a privileged user mode for the OS

Undefined mode is entered when an undefined instruction exception occurs.
Secure Monitor mode is a Secure mode for the TrustZone Secure Monitor code.

Note

Secure Monitor mode is not the same as monitor debug mode.

Modes other than User mode are collectively known as privileged modes. Privileged modes are
used to service interrupts or exceptions, or to access protected resources. Table 2-4 lists the
mode structure for the processor.

Table 2-4 Mode structure

State of core

Modes Mode type
NS bit=1 NS bit=0
User User Non-secure ~ Secure
FIQ privileged Non-secure ~ Secure
IRQ privileged Non-secure Secure
Supervisor privileged Non-secure Secure
Abort privileged Non-secure Secure
Undefined privileged Non-secure Secure
System privileged Non-secure Secure
Secure Monitor privileged Secure Secure
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 2-17

ID012310

Non-Confidential, Unrestricted Access

29 Registers

Programmer’s Model

The processor has a total of 40 registers:
. 33 general-purpose 32-bit registers
. seven 32-bit status registers.

These registers are not all accessible at the same time. The processor state and operating mode
determine the registers that are available to the programmer.

291 The ARM state core register set

In ARM state, 16 general registers and one or two status registers are accessible at any time. In
privileged modes, mode-specific banked registers become available. Figure 2-6 on page 2-20
shows the registers that are available in each mode.

The ARM state core register set contains 16 directly-accessible registers, R0-R15. Another
register, the Current Program Status Register (CPSR), contains condition code flags, status bits,
and current mode bits. Registers R0O-R12 are general-purpose registers used to hold either data
or address values. Registers R13, R14, R15, and the Saved Program Status Register (SPSR)
have the following special functions:

Stack Pointer Register R13 is used as the Stack Pointer (SP).

R13 is banked for the exception modes. This means that an exception
handler can use a different stack to the one in use when the exception
occurred.

In many instructions, you can use R13 as a general-purpose register, but
the architecture deprecates this use of R13 in most instructions. For more
information see the ARM Architecture Reference Manual.

Link Register Register R14 is used as the subroutine Link Register (LR).

Register R14 receives the return address when a Branch with Link (BL or
BLX) instruction is executed.

You can treat R14 as a general-purpose register at all other times. The
corresponding banked registers R14_mon, R14_svc, R14_irq, R14_fiq,
R14_abt, and R14_und are similarly used to hold the return values when
interrupts and exceptions arise, or when BL or BLX instructions are
executed within interrupt or exception routines.

Program Counter Register R15 holds the PC:
. in ARM state this is word-aligned
. in Thumb state this is halfword-aligned
. in Jazelle state this is byte-aligned.

Saved Program Status Register

In privileged modes, another register, the SPSR, is accessible. This
contains the condition code flags, status bits, and current mode bits saved
as a result of the exception that caused entry to the current mode.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 2-18
Non-Confidential, Unrestricted Access

Programmer’s Model

Banked registers have a mode identifier that indicates the mode that they relate to. Table 2-5 lists
these mode identifiers.

Table 2-5 Register mode identifiers

Mode Mode identifier
User usr?

Fast interrupt fiq

Interrupt irq

Supervisor sve

Abort abt

System usrd

Undefined und

Secure Monitor mon

a. The usr identifier is usually omitted from
register names. It is only used in descriptions
where the User or System mode register is
specifically accessed from another operating
mode.

FIQ mode has seven banked registers mapped to R§—R14 (R8_fig—R14_fiq). As a result many
FIQ handlers do not have to save any registers.

The Secure Monitor, Supervisor, Abort, IRQ, and Undefined modes each have alternative
mode-specific registers mapped to R13 and R14, permitting a private stack pointer and link
register for each mode.

Figure 2-6 on page 2-20 shows the ARM state registers.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 2-19
Non-Confidential, Unrestricted Access

Programmer’s Model

ARM state general registers and program counter

System and FIQ Supervisor Abort IRQ Undefined SeCL."e
User monitor
RO RO RO RO RO RO RO
R1 R1 R1 R1 R1 R1 R1
R2 R2 R2 R2 R2 R2 R2
R3 R3 R3 R3 R3 R3 R3
R4 R4 R4 R4 R4 R4 R4
R5 R5 R5 R5 R5 R5 R5
R6 R6 R6 R6 R6 R6 R6
R7 R7 R7 R7 R7 R7 R7
R8 R8_fiq R8 R8 R8 R8 R8
R9 R9_fiq R9 R9 R9 R9 R9
R10 R10_fiq R10 R10 R10 R10 R10
R11 R11_fiq R11 R11 R11 R11 R11
R12 R12_fiq R12 R12 R12 R12 R12
R13 R13_fiq R13_svc R13_abt R13_irq R13_und R13_mon
R14 R14_fiq R14_svc R14_abt R14_irq R14_und R14_mon
R15 R15 (PC) R15 (PC) R15 (PC) R15 (PC) R15 (PC) R15 (PC)

ARM state program status registers

| CPSR CPSR CPSR CPSR CPSR CPSR CPSR
SPSR _fiq SPSR_svc SPSR_abt SPSR_irq SPSR_und SPSR_mon

B= banked register

Figure 2-6 Register organization in ARM state

Figure 2-7 on page 2-21 shows an alternative view of the ARM registers.

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 2-20
ID012310 Non-Confidential, Unrestricted Access

16 general
purpose
registers + 1
status register

)

Programmer’s Model

RO
R1
R2
R3
%) R4
(]
@ R5 . . .
'GG; 23 mode-specific registers (banked registers)
o R6 17 banked general-purpose registers + 6 banked status registers
8 R7 ()
2 RS R8_fiq
g R9 R9_fig
oy R10 R10_fiq
& R11 R11_fiq
R12 R12_fiq
R13 R13_fiq R13_svc R13_abt R13_irq R13_und R13_mon
R14 R14_fiq R14_svc R14_abt R14_irq R14_und R14_mon
R15 (PC)
0 —
2
K2
()]
2 | oPsR || SPsRifiq || SPSR.svc|| SPSR.abt|| SPSR.rq || SPSR_und|| SPSR_mon
=}
IS
(2]
~

Figure 2-7 Processor core register set showing banked registers

2.9.2 The Thumb state core register set

The Thumb state core register set is a subset of the ARM state set. The programmer has direct

access to:

. eight general registers, RO—R7. For details of high register access in Thumb state see
Accessing high registers in Thumb state on page 2-22

. the PC

. a stack pointer, SP, ARM R13

. an LR, ARM R14

. the CPSR.

There are banked SPs, LRs, and SPSRs for each privileged mode. Figure 2-8 on page 2-22
shows the Thumb state core register set.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved.

Non-Confidential, Unrestricted Access

2-21

293

294

Programmer’s Model

Thumb state general registers and program counter

System and FIQ Supervisor Abort IRQ Undefined Secure

User monitor
RO RO RO RO RO RO RO
R1 R1 R1 R1 R1 R1 R1
R2 R2 R2 R2 R2 R2 R2
R3 R3 R3 R3 R3 R3 R3
R4 R4 R4 R4 R4 R4 R4
R5 R5 R5 R5 R5 R5 R5
R6 R6 R6 R6 R6 R6 R6
R7 R7 R7 R7 R7 R7 R7

SP SP_fiq SP_svc SP_abt SP_irq SP_und SP_mon

LR LR_fiq LR_svc LR_abt LR_irq LR_und LR_mon
PC PC PC PC PC PC PC

Thumb state program status registers
| CPSR CPSR CPSR CPSR CPSR CPSR CPSR
SPSR_fiq SPSR_svc SPSR_abt SPSR _irq SPSR_und SPSR_mon

B= banked register

Accessing high registers in Thumb state

Figure 2-8 Register organization in Thumb state

In Thumb state, the high registers, R8—R15, are not part of the standard core register set. You
can use special variants of the MOV instruction to transfer a value from a low register, in the
range RO-R7, to a high register, and from a high register to a low register. The CMP instruction
enables you to compare high register values with low register values. The ADD instruction
enables you to add high register values to low register values. For more details, see the ARM

Architecture Reference Manual.

ARM state and Thumb state registers relationship

Figure 2-9 on page 2-23 shows the relationships between the Thumb state and ARM state
registers. See the Jazelle VI Architecture Reference Manual for details of Jazelle state registers.

ARM DDI 0301H

ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved.

Non-Confidential, Unrestricted Access

2-22

Thumb state

Programmer’s Model

ARM State

RO

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

Stack Pointer (R13)

Link Register (R14)

Program Counter (R15)

CPSR

RO _—
R1 _—
[2]
b R2 _—
-ag; R3 _—
= R4 _—
% R5 _—
-
R6 _—
R7 _—
&
g
K]
[e)]
e
<
%’ Stack pointer (SP) |———>
Link register (LR) |—————
Program counter (PC) | —mM8M8M8M8m™ —
CPSR _—
SPSR _—

SPSR

Figure 2-9 ARM state and Thumb state registers relationship

Note

Registers RO—R7 are known as the low registers. Registers R8—R15 are known as the high

registers.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved.
Non-Confidential, Unrestricted Access

2-23

Programmer’s Model

210 The program status registers

The processor contains one CPSR, and six SPSRs for exception handlers to use. The program
status registers:

. hold information about the most recently performed ALU operation
. control the enabling and disabling of interrupts
. set the processor operating mode.

Figure 2-10 shows the arrangement of bits in the status registers, and the sections from The
condition code flags to Reserved bits on page 2-29 inclusive describe it.

31 30 29 28 27 26 25 24 23 20 19 16 15 109 8 7 6 5 4 0
DNM DNM . DNM .
Nfz[Cc|Vv]Q (RAZ) J (RAZ) GE[3:0] (RAZ) E|A|I|F]|T M[4:0]
%/_/ %/_/
|_ Greater than L Mode bits
or equal to .
Thumb state bit

Jazelle state bit

: FIQ disable

Sticky overflow IRQ disable

Overflow | i bort
mprecise abo

Carry/Borrow/Extend disable bit

Zero

Data endianness bit

Negative/Less than

Figure 2-10 Program status register

Note

The bits that Figure 2-10 identifies as Do Not Modify (DNM), Read As Zero (RAZ), must not be
modified by software. These bits are:

. Readable, to enable the processor state to be preserved, for example, during process
context switches

. Writable, to enable the processor state to be restored. To maintain compatibility with
future ARM processors, and as good practice, you are strongly advised to use a
read-modify-write strategy when changing the CPSR.

2.10.1 The condition code flags

The N, Z, C, and V bits are the condition code flags. You can set them by arithmetic and logical
operations, and also by MSR and LDM instructions. The processor tests these flags to determine
whether to execute an instruction.

In ARM state, most instructions can execute conditionally on the state of the N, Z, C, and V bits.
The exceptions are:

. BKPT
° CDP2
. CPS
. LDC2
. MCR2
. MCRR2
. MRC2
. MRRC2
. PLD
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 2-24

ID012310 Non-Confidential, Unrestricted Access

Programmer’s Model

. SETEND
. RFE

. SRS

. STC2.

In Thumb state, only the Branch instruction can be executed conditionally. For more
information about conditional execution, see the ARM Architecture Reference Manual.

210.2 The Qflag

The Sticky Overflow (Q) flag can be set by certain multiply and fractional arithmetic

instructions:

. QADD

. QDADD
. QSUB

. QDSUB
. SMLAD
. SMLAxy
. SMLAWYy
. SMLSD
. SMUAD
. SSAT

. SSAT16
. USAT

. USAT16.

The Q flag is sticky in that, when set by an instruction, it remains set until explicitly cleared by
an MSR instruction writing to the CPSR. Instructions cannot execute conditionally on the status
of the Q flag.

To determine the status of the Q flag you must read the PSR into a register and extract the Q flag
from this. For details of how the Q flag is set and cleared, see individual instruction definitions
in the ARM Architecture Reference Manual.

2.10.3 The J bit

The J bit in the CPSR indicates when the processor is in Jazelle state.

When:
J=0 The processor is in ARM or Thumb state, depending on the T bit.
J=1 The processor is in Jazelle state.
Note
. The combination of J = 1 and T = 1 causes similar effects to setting T=1 on a non

Thumb-aware processor. That is, the next instruction executed causes entry to the
Undefined Instruction exception. Entry to the exception handler causes the processor to
re-enter ARM state, and the handler can detect that this was the cause of the exception
because J and T are both set in SPSR_und.

. MSR cannot be used to change the J bit in the CPSR.

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 2-25
ID012310 Non-Confidential, Unrestricted Access

Programmer’s Model

. The placement of the J bit avoids the status or extension bytes in code running on
ARMVSTE or earlier processors. This ensures that OS code written using the deprecated
CPSR, SPSR, CPSR_all, or SPSR_all syntax for the destination of an MSR instruction
continues to work.

2.10.4 The GE[3:0] bits

Some of the SIMD instructions set GE[3:0] as greater-than-or-equal bits for individual
halfwords or bytes of the result. Table 2-6 lists these.

Table 2-6 GE[3:0] settings

GE[3] GE[2] GE[1] GEJ[0]
Instruction AopB>=C AopB>=C AopB>=C AopB>=C
Signed
SADDI6 [31:16] + [31:16] = 0 [31:16] + [31:16] = 0 [15:0] + [15:0] = 0 [15:0] + [15:0] = 0
SSUB16 [31:16] - [31:16] 20 [31:16] - [31:16] =20 [15:0] - [15:0]1 20 [15:0] - [15:0]1 =0
SADDSUBX [31:16] +[15:0] >0 [31:16] + [15:0] =20 [15:0] - [31:16] =0 [15:0] - [31:16] >0
SSUBADDX [31:16]-[15:0]=0 [31:16] - [15:0] = 0 [15:0] + [31:16] =0 [15:0] +[31:16] >0
SADD8 [31:24] + [31:24] 20 [23:16] +[23:16] >0 [15:8] +[15:8] =0 [7:0] +[7:0] =0
SSUBS [31:24] - [31:24] 20 [23:16] - [23:16] 20 [15:8] - [15:8] =0 [7:0] - [7:0] 20
Unsigned
UADD16 [31:16] + [31:16] = 216 [31:16] + [31:16] =216 [15:0] + [15:0] > 216 [15:0] + [15:0] > 216
USUBI16 [31:16] - [31:16] =0 [31:16] - [31:16] =0 [15:0] - [15:0] =0 [15:0] - [15:0]1 =0
UADDSUBX [31:16] +[15:0] 2216 [31:16] +[15:0] =216 [15:0]-[31:16]=20 [15:0]-[31:16] 20
USUBADDX [31:16]-[15:0]1 =0 [31:16] - [15:0]1 20 [15:0] + [31:16] = 216 [15:0] + [31:16] 216
UADDS8 [31:24] + [31:24] > 28 [23:16] + [23:16] > 28 [15:8] + [15:8] = 28 [7:0] + [7:0] > 28
USUBS [31:24] - [31:24] 20 [23:16] - [23:16] =0 [15:8] - [15:8]=0 [7:0] - [7:0] =0

Note

GE bitis 1 if A op B > C, otherwise 0.

The SEL instruction uses GE[3:0] to select the source register that supplies each byte of its
result.

Note

. For unsigned operations, the GE bits are determined by the usual ARM rules for carries
out of unsigned additions and subtractions, and so are carry-out bits.

. For signed operations, the rules for setting the GE bits are chosen so that they have the
same sort of greater than or equal functionality as for unsigned operations.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved.
Non-Confidential, Unrestricted Access

2-26

2.10.5 The E bit

2.10.6 The A bit

Programmer’s Model

ARM and Thumb instructions are provided to set and clear the E-bit. The E bit controls
load/store endianness. For details of where the E bit is used see Chapter 4 Unaligned and
Mixed-endian Data Access Support.

Architecture versions prior to ARMv6 specify this bit as SBZ. This ensures no endianness
reversal on loads or stores.

The A bit is set automatically. It is used to disable imprecise Data Aborts. It might be not
writable in the Non-secure world if the AW bit in the SCR register is reset. For details of how
to use the A bit see Imprecise Data Abort mask in the CPSR/SPSR on page 2-47.

2.10.7 The control bits

The bottom eight bits of a PSR are known collectively as the control bits. They are the:
. Interrupt disable bits

. T bit

. Mode bits on page 2-28.

The control bits change when an exception occurs. When the processor is operating in a
privileged mode, software can manipulate these bits.

Interrupt disable bits

The I and F bits are the interrupt disable bits:

. When the I bit is set, IRQ interrupts are disabled.

. When the F bit is set, FIQ interrupts are disabled. FIQ can be non-maskable in the
Non-secure world if the FW bit in SCR register is reset

Note

You can change the SPSR F bit in the Non-secure world but this does not update the CPSR if
the SCR bit 4 (FW) does not permit it.

T bit

The T bit reflects the operating state:
. when the T bit is set, the processor is executing in Thumb state

. when the T bit is clear, the processor is executing in ARM state, or Jazelle state depending
on the J bit.

Note

Never use an MSR instruction to force a change to the state of the T bit in the CPSR. If an MSR
instruction does try to modify this bit the result is architecturally Unpredictable. In the
ARMI1176JZF-S processor this bit is not affected.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 2-27
Non-Confidential, Unrestricted Access

Mode bits

Programmer’s Model

M[4:0] are the mode bits. Table 2-7 lists how these bits determine the processor operating mode.

Table 2-7 PSR mode bit values

Visible state registers

M[4:0] Mode
Thumb ARM

b10000 User RO-R7, R8-R122, SP, LR, PC, CPSR RO-R14, PC, CPSR

b10001 FIQ RO-R7, R8_fig-R12_fiq?3, SP_fiq, LR_fiq PC, RO-R7, R8_fig—R14_fiq, PC, CPSR,
CPSR, SPSR_fig SPSR_fig

b10010 IRQ RO-R7, R8-R124, SP_irq, LR_irq, PC, CPSR, RO-R12, R13_irq, R14_irq, PC, CPSR,
SPSR_irq SPSR_irq

b10011 Supervisor RO-R7, R8-R122, SP_svc, LR_svc, PC, CPSR, RO-R12, R13_svc, R14_svc, PC, CPSR,
SPSR_svc SPSR_svc

b10111 Abort RO-R7, R8-R122, SP_abt, LR_abt, RO-R12, R13_abt, R14_abt, PC, CPSR,
PC, CPSR, SPSR_abt SPSR_abt

b11011 Undefined R0-R7, R8-R122, SP_und, RO-R12, R13_und, R14_und,
LR_und, PC, CPSR, SPSR_und PC, CPSR, SPSR_und

bl11111 System RO-R7, R8-R123, SP, LR, PC, CPSR RO-R14, PC, CPSR

bl10110 Secure RO-R7, R8-R122, SP_mon, LR_mon, PC, CPSR, = R0-R12, PC,CPSR, SPSR_mon,

Monitor

SPSR_mon R13_mon,R14_mon

a. Access to these registers is limited in Thumb state.

2.10.8 Modification of PSR bits by MSR instructions

In previous architecture versions, MSR instructions can modify the flags byte, bits [31:24], of
the CPSR in any mode, but the other three bytes are only modifiable in privileged modes.

After the introduction of ARM architecture v6, however, each CPSR bit falls into one of the
following categories:

Bits that are freely modifiable from any mode, either directly by MSR instructions or by
other instructions whose side-effects include writing the specific bit or writing the entire
CPSR.

Bits in Figure 2-10 on page 2-24 that are in this category are N, Z, C, V, Q, GE[3:0], and E.
Bits that must never be modified by an MSR instruction, and so must only be written as a

side-effect of another instruction. If an MSR instruction does try to modify these bits the
results are architecturally Unpredictable. In the processor these bits are not affected.

Bits in Figure 2-10 on page 2-24 that are in this category are J and T.
Bits that can only be modified from privileged modes, and that are completely protected
from modification by instructions while the processor is in User mode. The only way that

these bits can be modified while the processor is in User mode is by entering a processor
exception, as Exceptions on page 2-36 describes.

Bits in Figure 2-10 on page 2-24 that are in this category are A, I, F, and M[4:0].

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved.
Non-Confidential, Unrestricted Access

2-28

Programmer’s Model

Only Secure privileged modes can write directly to the CPSR mode bits to enter Secure
Monitor mode. If the core is in Secure User mode, Non-secure User mode, or Non-secure
privileged modes it ignores changes to the CPSR to enter the Secure Monitor. The core
does not copy mode bits in the SPSR, changed in the Non-secure world, across to the
CPSR.

2.10.9 Reserved bits

The remaining bits in the PSRs are unused, but are reserved. When changing a PSR flag or
control bits, make sure that these reserved bits are not altered. You must ensure that your
program does not rely on reserved bits containing specific values because future processors
might use some or all of the reserved bits.

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 2-29
ID012310 Non-Confidential, Unrestricted Access

Programmer’s Model

2.11 Additional instructions

To support extensions to ARMv6, the ARM1176JZF-S processor includes these instructions in
addition to those in the ARMv6 and TrustZone architectures:

. Load Register Exclusive instructions, see LDREXB, LDREXH on page 2-31, and
LDREXD on page 2-33

. Store Register Exclusive instructions, see STREXB, STREXH on page 2-32, and STREXH
on page 2-32

. Clear Register Exclusive instruction, see CLREX on page 2-34

. Yield instruction, see NOP-compatible hints on page 2-34.

2.11.1 Load or Store Byte Exclusive

These instruction operate on unsigned data of size byte.
No alignment restrictions apply to the addresses of these instructions.

The LDREXB and STREXB instructions share the same data monitors as the LDREX and
STREX instructions, a local and a global monitor for each processor, for shared memory
support.

LDREXB

Figure 2-11 shows the format of the Load Register Byte Exclusive, LDREXB, instruction.

31 28 27 212019 16 15 121 8 7 4 3 0

Cond 00011 10]|1 Rn Rd SBO 1001 SBO

Figure 2-11 LDREXB instruction

Syntax

LDREXB{<cond>} <Rxf>, [<Rbase>]

Operation

if ConditionPassed(cond) then
processor_id = ExecutingProcessor()
Rd = Memory[Rn,1]
if Shared(Rn) ==1 then
physical_address=TLB(Rn)
MarkExcTusiveGlobal(physical_address,processor_id,1)
MarkExclusivelLocal(processor_id)

STREXB
Figure 2-12 shows the format of the Store Register Byte Exclusive, STREXB, instruction.

31 28 27 212019 16 15 121 8 7 4 3 0

Cond 0001T110(0 Rn Rd SBO 1001 Rm

Figure 2-12 STREXB instructions

Syntax

STREXB{<cond>} <Rd>, <Rm>, [<Rn>]]

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 2-30
Non-Confidential, Unrestricted Access

Programmer’s Model

Operation

if ConditionPassed(cond) then
processor_id = ExecutingProcessor()
if IsExclusivelocal(processor_id) then
if Shared(Rn)==1 then
physical_address=TLB(Rn)
if IsExclusiveGlobal(physical_address,processor_id,1) then
Memory[Rn,1] = Rm

Rd =0
ClearByAddress(physical_address,1)
else
Rd =1
else
Memory[Rn,1] = Rm
Rd =0
else
Rd =1

ClearExclusivelocal(processor_id)

2.11.2 Load or Store Halfword Exclusive
These instructions operate on naturally aligned, unsigned data of size halfword:

. The address in memory must be 16-bit aligned, address[0] == b0

When (A,U) ==(0,1), (1,0) or (1,1) in CP15 register 1, the instruction generates alignment
faults if this condition is not met.

For more information, see Operation of unaligned accesses on page 4-13.

. The transaction must be a single access or indivisible burst on bus widths < 16 bits

For AXI based systems, the exclusive access signal, AXPROT][4], must remain asserted
throughout the burst where AXSIZE < 0x1.

The LDREXH and STREXH instructions share the same data monitors as the LDREX and
STREX instructions, a local and a global monitor for each processor, for shared memory
support.

LDREXH

Figure 2-13 shows the format of the Load Register Halfword Exclusive, LDREXH, instruction.

31 28 27 212019 16 15 121 8 7 4 3 0

Cond 00011111 Rn Rd SBO 1001 SBO

Figure 2-13 LDREXH instruction

Syntax

LDREXH{<cond>} <Rd>, [<Rn>]

Operation

if ConditionPassed(cond) then
processor_id = ExecutingProcessor()
Rd = Memory[Rn,2]
if Shared(Rn) ==1 then
physical_address=TLB(Rn)
MarkExcTusiveGlobal(physical_address,processor_id,2)
MarkExclusivelocal(processor_id)

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 2-31
ID012310 Non-Confidential, Unrestricted Access

Programmer’s Model

STREXH

Figure 2-14 shows the format of the Store Register Halfword Exclusive, STREXH, instruction.

31 28 27 212019 1615 1211 8 7 4 3 0
Cond 0001111]|0 Rn Rd SBO 100 1 Rm
Figure 2-14 STREXH instruction
Syntax

STREXH{<cond>} <Rd>, <Rm>, [<Rn>]

Operation

if ConditionPassed(cond) then
processor_id = ExecutingProcessor()
if IsExclusivelocal(processor_id) then

if Shared(Rn)==1 then
physical_address=TLB(Rn)
if IsExclusiveGlobal(physical_address,processor_id,2) then
Memory[Rn,2] = Rm

Rd =0
ClearByAddress(physical_address,2)
else
Rd =1
else
Memory[Rn,2] = Rm
Rd =0
else
Rd =1

ClearExclusivelocal(processor_id)

2.11.3 Load or Store Doubleword

The LDREXD and STREXD instructions behave as follows:

The operands are considered as two words, that load or store to consecutive
word-addressed locations in memory.

Register restrictions are the same as LDRD and STRD. For STRD in ARM state, the
registers Rm and R(m+1) provide the value that is stored, where m is an even number.
The address in memory must be 64-bit aligned, address[2:0] == b000

When (A,U)==(0,1), (1,0) or (1,1) in CP15 register 1, the instruction generates alignment
faults if this condition is not met.

For more information, see Operation of unaligned accesses on page 4-13.

The transaction must be a single access or indivisible burst on bus widths < 64 bits

For AXI based systems, the exclusive access signal, AXPROT][4], must remain asserted
throughout the burst where AXSIZE < 0x3.

The LDREXD and STREXD instructions share the same data monitors as the LDREX and
STREX instructions, a local and a global monitor for each processor, for shared memory
support.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 2-32
Non-Confidential, Unrestricted Access

Programmer’s Model

LDREXD

Figure 2-15 shows the format of the Load Register Doubleword Exclusive, LDREXD,
instruction.

31 28 27 212019 16 15 121 8 7 4 3 0

Cond 000110 1|1 Rn Rd SBO 1001 SBO

Figure 2-15 LDREXD instruction

Syntax

LDREXD{<cond>} <Rd>, [<Rn>]

Operation

if ConditionPassed(cond) then

processor_id = ExecutingProcessor()

Rd = Memory[Rn,4]

R(d+1) = Memory[Rn+4,4]

if Shared(Rn) ==1 then
physical_address=TLB(Rn)
MarkExcTusiveGlobal(physical_address,processor_id,8)

MarkExclusivelLocal(processor_id)

STREXD

Figure 2-16 shows the format of the Store Register Doubleword Exclusive, STREXD,
instruction.

31 28 27 212019 16 15 121 8 7 4 3 0

Cond 0001T101(0 Rn Rd SBO 1001 Rm

Figure 2-16 STREXD instruction

Syntax

STREXD{<cond>} <Rd>, <Rm>, [<Rn>]

Operation

if ConditionPassed(cond) then
processor_id = ExecutingProcessor()
if IsExclusivelocal(processor_id) then
if Shared(Rn)==1 then
physical_address=TLB(Rn)
if IsExclusiveGlobal(physical_address,processor_id,8) then
Memory[Rn,4] = Rm
Memory[Rn+4,4] = R(m+1)
Rd = 0
ClearByAddress(physical_address,8)
else
Rd =1
else
Memory[Rn,4] =
Memory[Rn+4,4]
Rd =0

Rm
= R(m+1)

else
Rd =1

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 2-33
Non-Confidential, Unrestricted Access

2114 CLREX

Programmer’s Model

ClearExclusivelocal(processor_id)

Figure 2-17 shows the format of the Clear Exclusive, CLREX, instruction.

31 28 27 212019 16 15 121 8 7 4 3 0

111 01010111 SBO SBO SBZ 0001 SBO

Figure 2-17 CLREX instruction

The dummy STREX construct specified in ARMv6 is required for correct system behavior. The
CLREX instruction replaces the dummy STREX instruction.

This operation in unconditional in the ARM instruction set.

Syntax
CLREX

Operation

ClearExclusivelocal(processor_id)

2.11.5 NOP-compatible hints

Figure 2-18 shows the format of the NOP-compatible hint instruction.

31 28 27 2322212019 16 15 121 8 7 0

Cond 00110|0f1 0J]OO0CO0O SBO 00O0O Hint

Figure 2-18 NOP-compatible hint instruction

Syntax

<cond> Is the condition when the instruction executes. It produces no useful change in
functionality, but is provided to ensure disassembly followed by reassembly
always regenerates the original code.

<hint> defaults to zero

hint == 0x0: the instruction is NOP
hint == 0x1: the instruction is YIELD

For all other values, RESERVED, the instruction behaves like NOP.
The true NOP for ARM state is equivalent to an MSR to the CPSR with the immed_value

redefined as the hint field and no bytes selected. The instruction is fully architecturally defined,
with all encodings assigned.

Note

True NOPs are architected for alignment reasons and do not have any timing guarantees with
respect to their neighboring instructions.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 2-34
Non-Confidential, Unrestricted Access

Programmer’s Model

In an Symmetric Multi-Threading (SMT) design, a yield instruction enables a thread to generate
a hint to the processor that runs it. The hint indicates that the current activity of the thread is not
important, for example sitting in a spin-lock, and so can yield. On a uniprocessor system, this
instruction behaves as a NOP. OSs can use the yielding NOP in those places that require the
yield hint, and the non-yielding NOP in other cases.

Operation

The instruction acts as a NOP irrespective of whether the condition passes or fails, effectively
the ALWAYS condition. Do not use RESERVED values in software.

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 2-35
ID012310 Non-Confidential, Unrestricted Access

212 Exceptions

Programmer’s Model

Exceptions occur whenever the normal flow of a program has to be halted temporarily. For
example, to service an interrupt from a peripheral. Before attempting to handle an exception, the
processor preserves the current processor state so that the original program can resume when the
handler routine has finished.

If two or more exceptions occur simultaneously, the exceptions are dealt with in the fixed order
given in Exception priorities on page 2-57.

This section provides details of the processor exception handling:
. Exception entry and exit summary on page 2-37

. Entering an ARM exception on page 2-38

. Leaving an ARM exception on page 2-38.

Several enhancements are made in ARM architecture v6 to the exception model, mostly to
improve interrupt latency, as follows:

. New instructions are added to give a choice of stack to use for storing the exception return
state after exception entry, and to simplify changes of processor mode and the disabling
and enabling of interrupts.

. The interrupt vector definitions on ARMv6 are changed to support the addition of
hardware to prioritize the interrupt sources and to look up the start vector for the related
interrupt handling routine.

. A low interrupt latency configuration is added in ARMv6. In terms of the instruction set
architecture, it specifies that multi-access load/store instructions, ARM LDC, LDM,
LDRD, STC, STM, and STRD, and Thumb LDMIA, POP, PUSH, and STMIA, can be
interrupted and then restarted after the interrupt has been processed.

. Support for an imprecise Data Abort that behaves as an interrupt rather than as an abort,
in that it occurs asynchronously relative to the instruction execution. Support involves the
masking of a pending imprecise Data Abort at times when entry into Abort mode is
deemed unrecoverable.

2121 New instructions for exception handling

This section describes the instructions added to accelerate the handling of exceptions. Full
details of these instructions are given in the ARM Architecture Reference Manual.

Store Return State (SRS)

This instruction stores R14_<current_mode> and SPSR_<current_mode> to sequential
addresses, using the banked version of R13 for a specified mode to supply the base address, and
to be written back to if base register Write-Back is specified. This enables an exception handler
to store its return state on a stack other than the one automatically selected by its exception entry
sequence.

The addressing mode used is a version of an ARM addressing mode, modified to assume a
{R14,SPSR} register list rather than using a list specified by a bit mask in the instruction. For
more information see the ARM Architecture Reference Manual. This enables the SRS
instruction to access stacks in a manner compatible with the normal use of STM instructions for
stack accesses.

When in Non-secure state, specifying Secure Monitor mode in <mode> parameter field causes
the SRS to be an Undefined exception. The behavior prevents the Secure Monitor stack values
being altered.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 2-36
Non-Confidential, Unrestricted Access

Programmer’s Model

Return From Exception (RFE)

This instruction loads the PC and CPSR from sequential addresses. This is used to return from
an exception that has had its return state saved using the SRS instruction, see Store Return State
(SRS) on page 2-36, and again uses a version of an ARM addressing mode, modified to assume
a {PC,CPSR} register list.

Change Processor State (CPS)

This instruction provides new values for the CPSR interrupt masks, mode bits, or both, and is
designed to shorten and speed up the read/modify/write instruction sequence used in ARMVS to
perform such tasks. Together with the SRS instruction, it enables an exception handler to save
its return information on the stack of another mode and then switch to that other mode, without
modifying the stack belonging to the original mode or any registers other than the new mode
stack pointer.

This instruction also streamlines interrupt mask handling and mode switches in other code. In
particular it enables short code sequences to be made atomic efficiently in a uniprocessor system
by disabling interrupts at their start and re-enabling interrupts at their end. A similar Thumb
instruction is also provided. However, the Thumb instruction can only change the interrupt
masks, not the processor mode as well, to avoid using too much instruction set space.

2.12.2 Exception entry and exit summary

Table 2-8 summarizes the PC value preserved in the relevant R14 on exception entry, and the
recommended instruction for exiting the exception handler. Full details of Jazelle state
exceptions are provided in the Jazelle VI Architecture Reference Manual.

Table 2-8 Exception entry and exit

Previous state

Exception Return instruction Notes
or entry ARMR14 x Thumb Jazelle
- R14_x R14_x

SvVC MOVS PC, R14_svc PC+4 PC+2 - Where the PC is the address
of the SVC, SMC, or

SMC MOVS PC, R14_mon PC +4 - - undefined instruction. Not

UNDEF MOVS PC, R14_und PC+4 PC+2 } used in Jazelle state.

PABT SUBS PC, R14_abt, #4 PC+4 PC+4 PC+4 Where the PC is the address
of instruction that had the
Prefetch Abort.

FIQ SUBS PC, R14_fiq, #4 PC+4 PC+4 PC+4 Where the PC is the address

- of the instruction that was

IRQ SUBS PC, R14.irq, #4 PC+4 PC+4 PC+4 not executed because the
FIQ or IRQ took priority.

DABT SUBS PC, R14_abt, #8 PC+38 PC+8 PC+8 Where the PC is the address
of the Load or Store
instruction that generated
the Data Abort.

RESET NA - - - The value saved in R14_svc
on reset is Unpredictable.

BKPT SUBS PC, R14_abt, #4 PC+4 PC+4 PC+4 Software breakpoint.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 2-37

Non-Confidential, Unrestricted Access

Programmer’s Model

2.12.3 Entering an ARM exception

SCR[3:1] determine the mode that the processor enters on an FIQ, IRQ, or external abort
exception, see System control and configuration on page 3-5.

When handling an ARM exception the processor:

1. Preserves the address of the next instruction in the appropriate LR. When the exception

entry is from:

ARM and Jazelle states:
The processor writes the value of the PC into the LR, offset by a value, current
PC + 4 or PC + 8 depending on the exception, that causes the program to
resume from the correct place on return.

Thumb state:
The processor writes the value of the PC into the LR, offset by a value, current
PC + 2, PC + 4 or PC + 8 depending on the exception, that causes the program
to resume from the correct place on return.

The exception handler does not have to determine the state when entering an exception.
For example, in the case of a SVC, MOVS PC, R14_svc always returns to the next instruction
regardless of whether the SVC was executed in ARM or Thumb state.

2. Copies the CPSR into the appropriate SPSR.
3. Forces the CPSR mode bits to a value that depends on the exception.
4. Forces the PC to fetch the next instruction from the relevant exception vector.

The processor can also set the interrupt and imprecise abort disable flags to prevent otherwise
unmanageable nesting of exceptions.

Note

Exceptions are always entered, handled, and exited in ARM state. When the processor is in
Thumb state or Jazelle state and an exception occurs, the switch to ARM state takes place
automatically when the exception vector address is loaded into the PC.

212.4 Leaving an ARM exception

2.12.5 Reset

When an exception has completed, the exception handler must move the LR, minus an offset to
the PC. The offset varies according to the type of exception, as Table 2-8 on page 2-37 lists.

Typically the return instruction is an arithmetic or logical operation with the S bit set and rd =
R15, so the core copies the SPSR back to the CPSR.

Note

The action of restoring the CPSR from the SPSR automatically resets the T bit and J bit to the
values held immediately prior to the exception. The A, I, and F bits are also automatically
restored to the value they held immediately prior to the exception.

When the nRESETIN and nVFPRESETIN signals are driven LOW a reset occurs, and the
processor abandons the executing instruction.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 2-38
Non-Confidential, Unrestricted Access

Programmer’s Model

When nRESETIN and nVFPRESETIN are driven HIGH again the processor:

1. Forces NS bitin SCR to 0, Secure, CPSR M[4:0] to b10011, Secure Supervisor mode, sets
the A, I, and F bits in the CPSR, and clears the CPSR T bit and J bit. The E bit is set based
on the state of the BIGENDINIT and UBITINIT pins. Other bits in the CPSR are
indeterminate.

2. Forces the PC to fetch the next instruction from the reset vector address.
3. Reverts to ARM state, and resumes execution.
After reset, all register values except the PC and CPSR are indeterminate.

See Chapter 9 Clocking and Resets for more details of the reset behavior for the processor.

2.12.6 Fast interrupt request

The Fast Interrupt Request (FIQ) exception supports fast interrupts. In ARM state, FIQ mode
has eight private registers to reduce, or even remove the requirement for register saving,
minimizing the overhead of context switching.

An FIQ is externally generated by taking the nFIQ signal input LOW. The nFIQ input is
registered internally to the processor. It is the output of this register that is used by the processor
control logic.

Irrespective of whether exception entry is from ARM state, Thumb state, or Jazelle state, an FIQ
handler returns from the interrupt by executing:

SUBS PC,R14_fiq,#4

You can disable FIQ exceptions within a privileged mode by setting the CPSR F flag. When the
F flag is clear, the processor checks for a LOW level on the output of the nFIQ register at the
end of each instruction.

The FW bit and FIQ bit in the SCR register configure the FIQ as:
. non maskable in Non-secure world, FW bit in SCR
. branch to either current FIQ mode or Secure Monitor mode, FIQ bit in SCR.

FIQs and IRQs are disabled when an FIQ occurs. You can use nested interrupts but it is up to
you to save any corruptible registers and to re-enable FIQs and interrupts.

2.12.7 Interrupt request

The IRQ exception is a normal interrupt caused by a LOW level on the nIRQ input. IRQ has a
lower priority than FIQ, and is masked on entry to an FIQ sequence.

Irrespective of whether exception entry is from ARM state, Thumb state, or Jazelle state, an IRQ
handler returns from the interrupt by executing:

SUBS PC,R14_irq,#4

You can disable IRQ exceptions within a privileged mode by setting the CPSR I flag. When the
I flag is clear, the processor checks for a LOW level on the output of the nIRQ register at the end
of each instruction.

IRQs are disabled when an IRQ occurs. You can use nested interrupts but it is up to you to save
any corruptible registers and to re-enable IRQs.

The IRQ bit in the SCR register configures the IRQ to branch to either the current IRQ mode or
to the Secure Monitor mode.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 2-39
Non-Confidential, Unrestricted Access

Programmer’s Model

2.12.8 Low interrupt latency configuration

The FI bit, bit 21, in CP15 register 1 enables a low interrupt latency configuration. This bit is
not duplicated in both worlds, and can only be modified in Secure state. It applies to both worlds.

This mode reduces the interrupt latency of the processor. This is achieved by:
. disabling Hit-Under-Miss (HUM) functionality

. abandoning restartable external accesses so that the core can react to a pending interrupt
faster than is normally the case

. recognizing low-latency interrupts as early as possible in the main pipeline.

To ensure that a change between normal and low interrupt latency configurations is
synchronized correctly, the FI bit must only be changed in using the sequence:

1. Data Synchronization Barrier.
2. Change FI Bit.
3. Data Synchronization Barrier with interrupt disabled.

You must disable interrupts during this complete sequence of operations.

You must ensure that software systems only change the FI bit shortly after Reset, while
interrupts are disabled. In low interrupt latency configuration, software must only use
multi-word load/store instructions in ways that are fully restartable. In particular, they must not
be used on memory locations that produce non-idempotent side-effects for the type of memory
access concerned.

This enables, but does not require, implementations to make these instructions interruptible
when in low interrupt latency configuration. If the instruction is interrupted before it is
complete, the result might be that one or more of the words are accessed twice, but the
idempotency of the side-effects, if any, of the memory accesses ensures that this does not matter.

Note

There is a similar existing requirement with unaligned and multi-word load/store instructions
that access memory locations that can abort in a recoverable way. An abort on one of the words
accessed can cause a previously-accessed word to be accessed twice, once before the abort, and
once again after the abort handler has returned. The requirement in this case is either:

. all side-effects are idempotent
. the abort must either occur on the first word accessed or not at all.

The instructions that this rule currently applies to are:

o ARM instructions LDC, all forms of LDM, LDRD, STC, all forms of STM, STRD, and
unaligned LDR, STR, LDRH, and STRH

. Thumb instructions LDMIA, PUSH, POP, and STMIA, and unaligned LDR, STR, LDRH,
and STRH.

System designers are also advised that memory locations accessed with these instructions must
not have large numbers of wait-states associated with them if the best possible interrupt latency
is to be achieved.

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 2-40
ID012310 Non-Confidential, Unrestricted Access

Programmer’s Model

2.12.9 Interrupt latency example

This section gives an extended example to show how the combination of new facilities improves
interrupt latency. The example is not necessarily entirely realistic, but illustrates the main points.
To be simpler, this example applies for legacy code, that is for code that does not use any
TrustZone features. You can therefore assume the core only runs code in either Secure or
Non-secure world.

The assumptions made are:

1. Vector Interrupt Controller (VIC) hardware exists to prioritize interrupts and to supply the
address of the highest priority interrupt to the processor core on demand. In the ARMv5S
system, the address is supplied in a memory-mapped I/O location, and loading the address
acts as an entering interrupt handler acknowledgement to the VIC. In the ARMV6 system,
the address is loaded and the acknowledgement given automatically, as part of the
interrupt entry sequence. In both systems, a store to a memory-mapped I/O location is
used to send a finishing interrupt handler acknowledgement to the VIC.

2. The system has the following layers:

Real-time layer Contains handlers for a number of high-priority interrupts. These
interrupts can be prioritized, and are assumed to be signaled to the
processor core by means of the FIQ interrupt. Their handlers do not
use the facilities supplied by the other two layers. This means that
all memory they use must be locked down in the TLBs and caches.
It is possible to use additional code to make access to nonlocked
memory possible, but this example does not describe this.

Architectural completion layer

Contains Prefetch Abort, Data Abort and Undefined instruction
handlers whose purpose is to give the illusion that the hardware is
handling all memory requests and instructions on its own, without
requiring software to handle TLB misses, virtual memory misses,
and near-exceptional floating-point operations, for example. This
illusion is not available to the real-time layer, because the software
handlers concerned take a significant number of cycles, and it is not
reasonable to have every memory access to take large numbers of
cycles. Instead, the memory concerned has to be locked down.

Non real-time layer

Provides interrupt handlers for low-priority interrupts. These
interrupts can also be prioritized, and are assumed to be signaled to
the processor core using the IRQ interrupt.

3. The corresponding exception priority structure is as follows, from highest to lowest
priority:
a. FIQ1, highest priority FIQ
b. FIQ2
c.
d. FIQm, lowest priority FIQ
e. Data Abort
f. Prefetch Abort
g. Undefined instruction
h. SVC
i IRQ1, highest priority IRQ
J. IRQ2
k.
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 2-41

ID012310 Non-Confidential, Unrestricted Access

Programmer’s Model

L IRQn, lowest priority IRQ
The processor core prioritization handles most of the priority structure, but the VIC
handles the priorities within each group of interrupts.

Note

This list reflects the priorities that the handlers are subject to, and differs from the
priorities that the exception entry sequences are subject to. The difference occurs because
simultaneous Data Abort and FIQ exceptions result in the sequence:

a. Data Abort entry sequence executed, updating R14_abt, SPSR_abt, PC, and CPSR.
b. FIQ entry sequence executed, updating R14_fiq, SPSR_fiq, PC, and CPSR.

c. FIQ handler executes to completion and returns.

d. Data Abort handler executes to completion and returns.

For more information see the ARM Architecture Reference Manual.

Stack and register usage is:

. The FIQ1 interrupt handler has exclusive use of R8_fiq to R12_fiq. In ARMVS5,
R13_fiq points to a memory area, that is mainly for use by the FIQ1 handler.
However, a few words are used during entry for other FIQ handlers. In ARMv®6, the
FIQ1 interrupt handler has exclusive use of R13_fiq.

o The Undefined instruction, Prefetch Abort, Data Abort, and non-FIQ1 FIQ handlers
use the stack pointed to by R13_abt. This stack is locked down in memory, and
therefore of known, limited depth.

. All TRQ and SVC handlers use the stack pointed to by R13_svc. This stack does not
have to be locked down in memory.

. The stack pointed to by R13_usr is used by the current process. This process can be
privileged or unprivileged, and uses System or User mode accordingly.

Timings are roughly consistent with ARM10 timings, with the pipeline reload penalty
being three cycles. It is assumed that pipeline reloads are combined to execute as quickly
as reasonably possible, and in particular that:

. If an interrupt is detected during an instruction that has set a new value for the PC,
after that value has been determined and written to the PC but before the resulting
pipeline refill is completed, the pipeline refill is abandoned and the interrupt entry
sequence started as soon as possible.

. Similarly, if an FIQ is detected during an exception entry sequence that does not
disable FIQs, after the updates to R14, the SPSR, the CPSR, and the PC but before
the pipeline refill has completed, the pipeline refill is abandoned and the FIQ entry
sequence started as soon as possible.

FIQs in the example system in ARMv5

In ARMYVS, all FIQ interrupts come through the same vector, at address 9x0000001C or
0xFFFFOQ1C. To implement the above system, the code at this vector must get the address of the
correct handler from the VIC, branch to it, and transfer to using R13_abt and the Abort mode
stack if it is not the FIQ1 handler. The following code does, assuming that R8_fiq holds the
address of the VIC:

FIQhandler
LDR PC, [R8,#HandlerAddress]

FIQlhandler
. Include code to process the interrupt ...

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 2-42
Non-Confidential, Unrestricted Access

Programmer’s Model

STR RO, [R8,#AckFinished]
SUBS PC, R14, #4

FIQ2handler
STMIA R13, {RO-R3}
MoV RO, LR

MRS R1, SPSR

ADD R2, R13, #8

MRS R3, CPSR

BIC R3, R3, #0x1F

ORR R3, R3, #0x1B ; = Abort mode number

MSR CPSR_c, R3

STMFD R13!, {R@, R1}

LDMIA R2, {RO, R1}

STMFD R13!, {RO@, R1}

LDMDB R2, {RO, R1}

BIC R3, R3, #0x40 ; = F bit

MSR CPSR_c, R3
.. FIQs are now re-enabled, with original R2, R3, R14, SPSR on stack
. Include code to stack any more registers required, process the interrupt
. and unstack extra registers

ADR R2, #VICaddress

MRS R3, CPSR

ORR R3, R3, #0x40 ; = F bit

MSR CPSR_c, R3

STR RO, [R2,#AckFinished]

LDR R14, [R13,#12] ; Original SPSR value

MSR SPSR_fsxc, R14

LDMFD R13!, {R2,R3,R14}

ADD R13, R13, #4

SUBS PC, R14, #4

The major problem with this is the length of time that FIQs are disabled at the start of the lower
priority FIQs. The worst-case interrupt latency for the FIQ1 interrupt occurs if a lower priority
FIQ2 has fetched its handler address, and is approximately:

. 3 cycles for the pipeline refill after the LDR PC instruction fetches the handler address
. + 24 cycles to get to and execute the MSR instruction that re-enables FIQs

. + 3 cycles to re-enter the FIQ exception

. + 5 cycles for the LDR PC instruction at FIQhandler

. =35 cycles.

Note

FIQs must be disabled for the final store to acknowledge the end of the handler to the VIC.
Otherwise, more badly timed FIQs, each occurring close to the end of the previous handler, can
cause unlimited growth of the locked-down stack.

FIQs in the example system in ARMv6

Using the VIC and the new instructions, there is no longer any requirement for everything to go
through the single FIQ vector, and the changeover to a different stack occurs much more
smoothly. The code is:

FIQlhandler
. Include code to process the interrupt ...

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 2-43
Non-Confidential, Unrestricted Access

Programmer’s Model

STR RO, [R8,#AckFinished]
SUBS PC, R14, #4

FIQ2handler
SUB R14, R14, #4
SRSFD R13_abt!
CPSIE f, #0x1B ; = Abort mode

STMFD R13!, {R2, R3}
. FIQs are now re-enabled, with original R2, R3, R14, SPSR on stack
. Include code to stack any more registers required, process the interrupt
. and unstack extra registers

LDMFD R13!, {R2, R3}

ADR R14, #VICaddress

CPSID f
STR RO, [R14,#AckFinished]
RFEFD R13!

The worst-case interrupt latency for a FIQ1 now occurs if the FIQ1 occurs during an FIQ2
interrupt entry sequence, after it disables FIQs, and is approximately:

. 3 cycles for the pipeline refill for the FIQ2 exception entry sequence
. + 5 cycles to get to and execute the CPSIE instruction that re-enables FIQs

. + 3 cycles to re-enter the FIQ exception
. =11 cycles.
Note

In the ARMVS system, the potential additional interrupt latency caused by a long LDM or STM
being in progress when the FIQ is detected was only significant because the memory system was
able to stretch its cycles considerably. Otherwise, it was dwarfed by the number of cycles lost

because of FIQs being disabled at the start of a lower-priority interrupt handler. In ARMv6, this
is still the case, but it is a lot closer.

Alternatives to the example system
Two alternatives to the design in FIQs in the example system in ARMv6 on page 2-43 are:

. The first alternative is not to reserve the FIQ registers for the FIQ1 interrupt, but instead

either to:

— share them out among the various FIQ handlers
The first restricts the registers available to the FIQ1 handler and adds the software
complication of managing a global allocation of FIQ registers to FIQ handlers.
Also, because of the shortage of FIQ registers, it is not likely to be very effective if
there are many FIQ handlers.

— require the FIQ handlers to treat them as normal callee-save registers.
The second adds a number of cycles of loading important addresses and variable
values into the registers to each FIQ handler before it can do any useful work. That
is, it increases the effective FIQ latency by a similar number of cycles.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 2-44
Non-Confidential, Unrestricted Access

2.12.10 Aborts

Programmer’s Model

. The second alternative is to use IRQs for all but the highest priority interrupt, so that there
is only one level of FIQ interrupt. This achieves very fast FIQ latency, 5-8 cycles, but at a
cost to all the lower-priority interrupts that every exception entry sequence now disables
them. You then have the following possibilities:

— None of the exception handlers in the architectural completion layer re-enable
IRQs. In this case, all IRQs suffer from additional possible interrupt latency caused
by those handlers, and so effectively are in the non real-time layer. In other words,
this results in there only being one priority for interrupts in the real-time layer.

— All of the exception handlers in the architectural completion layer re-enable IRQs
to permit IRQs to have real-time behavior. The problem in this case is that all IRQs
can then occur during the processing of an exception in the architectural completion
layer, and so they are all effectively in the real-time layer. In other words, this
effectively means that there are no interrupts in the non real-time layer.

— All of the exception handlers in the architectural completion layer re-enable IRQs,
but they also use additional VIC facilities to place a lower limit on the priority of
IRQs that is taken. This permits IRQs at that priority or higher to be treated as being
in the real-time layer, and IRQs at lower priorities to be treated as being in the non
real-time layer. The price paid is some additional complexity in the software and in
the VIC hardware.

Note

For either of the last two options, the new instructions speed up the IRQ re-enabling and
the stack changes that are likely to be required.

An abort can be caused by either:
. the MMU signalling an internal abort
. an external abort being raised from the AXI interfaces, by an AXI error response.

There are two types of abort:
. Prefetch Abort
. Data Abort on page 2-46.

IRQs are disabled when an abort occurs. When the aborts are configured to branch to Secure
Monitor mode, the FIQ is also disabled.

Note

The Interrupt Status Register shows at any time if there is a pending IRQ, FIQ, or External
Abort. For more information, see c12, Interrupt Status Register on page 3-123.

All aborts from the TLB are internal except for aborts from page table walks that are external
precise aborts. If the EA bit is 1 for translation aborts, see c1, Secure Configuration Register on
page 3-52, the core branches to Secure Monitor mode in the same way as it does for all other
external aborts.

Prefetch Abort

This is signaled with the Instruction as it enters the pipeline Decode stage.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 2-45
Non-Confidential, Unrestricted Access

Programmer’s Model

When a Prefetch Abort occurs, the processor marks the prefetched instruction as invalid, but
does not take the exception until the instruction is to be executed. If the instruction is not
executed, for example because a branch occurs while it is in the pipeline, the abort does not take
place.

After dealing with the cause of the abort, the handler executes the following instruction
irrespective of the processor operating state:

SUBS PC,R14_abt,#4

This action restores both the PC and the CPSR, and retries the aborted instruction.

Data Abort

Data Abort on the processor can be precise or imprecise. Precise Data Aborts are those
generated after performing an instruction side CP15 operation, and all those generated by the
MMU:

. alignment faults

. translation faults
. access bit faults

. domain faults

. permission faults.

Data Aborts that occur because of watchpoints are imprecise in that the processor and system
state presented to the abort handler is the processor and system state at the boundary of an
instruction shortly after the instruction that caused the watchpoint, but before any following
load/store instruction. Because the state that is presented is consistent with an instruction
boundary, these aborts are restartable, even though they are imprecise.

Errors that cause externally generated Data Aborts might be precise or imprecise. Two separate
FSR encodings indicate if the external abort is precise or imprecise:

. all external aborts to loads when the CP15 Register 1 FI bit, bit 21, is set are precise

. all external aborts to loads or stores to Strongly Ordered memory are precise
. all external aborts to loads to the Program Counter or the CSPR are precise
. all external aborts on the load part of a SWP are precise

. all other external aborts are imprecise.

External aborts are supported on cacheable locations. The abort is transmitted to the processor
only if a word requested by the processor had an external abort.

Precise Data Aborts

A precise Data Abort is signaled when the abort exception enables the processor and system
state presented to the abort handler to be consistent with the processor and system state when
the aborting instruction was executed. With precise Data Aborts, the restarting of the processor
after the cause of the abort has been rectified is straightforward.

The ARM1176JZF-S processor implements the base restored Data Abort model, that differs
from the base updated Data Abort model implemented by the ARM7TDMI-S processor.

With the base restored Data Abort model, when a Data Abort exception occurs during the
execution of a memory access instruction, the base register is always restored by the processor
hardware to the value it contained before the instruction was executed. This removes the
requirement for the Data Abort handler to unwind any base register update, that might have been
specified by the aborted instruction. This simplifies the software Data Abort handler. See ARM
Architecture Reference Manual for more details.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 2-46
Non-Confidential, Unrestricted Access

Programmer’s Model

After dealing with the cause of the abort, the handler executes the following return instruction
irrespective of the processor operating state at the point of entry:

SUBS PC,R14_abt,#8

This restores both the PC and the CPSR, and retries the aborted instruction.

Imprecise Data Aborts

An imprecise Data Abort is signaled when the processor and system state presented to the abort
handler cannot be guaranteed to be consistent with the processor and system state when the
aborting instruction was issued.

2.12.11 Imprecise Data Abort mask in the CPSR/SPSR

An imprecise Data Abort caused, for example, by an External Error on a write that has been held
in a Write Buffer, is asynchronous to the execution of the causing instruction and can occur
many cycles after the instruction that caused the memory access has retired. For this reason, the
imprecise Data Abort can occur at a time that the processor is in Abort mode because of a
precise Data Abort, or can have live state in Abort mode, but be handling an interrupt.

To avoid the loss of the Abort mode state, R14_abt and SPSR_abt, in these cases, that leads to
the processor entering an unrecoverable state, the existence of a pending imprecise Data Abort
must be held by the system until a time when the Abort mode can safely be entered.

A mask is added into the CPSR to indicate that an imprecise Data Abort can be accepted. This
bit is referred to as the A bit. The imprecise Data Abort causes a Data Abort to be taken when
imprecise Data Aborts are not masked. When imprecise Data Aborts are masked, then the
implementation is responsible for holding the presence of a pending imprecise Data Abort until
the mask is cleared and the abort is taken. The A bit is set automatically on entry into Abort
Mode, IRQ, and FIQ Modes, and on Reset.

Note

You cannot change the CPSR A bit in the Non-secure world if the SCR bit 5 is reset. You can
change the SPSR A bit in the Non-secure world but this does not update the CPSR if the SCR
bit 5 does not permit it.

2.12.12 Supervisor call instruction

You can use the Supervisor call instruction (SVC) to enter Supervisor mode, usually to request
a particular supervisor function. The SVC handler reads the opcode to extract the SVC function
number. A SVC handler returns by executing the following instruction, irrespective of the
processor operating state:

MOVS PC, R14_svc
This action restores the PC and CPSR, and returns to the instruction following the SVC.

IRQs are disabled when a Supervisor call occurs.

2.12.13 Secure Monitor Call (SMC)

When the processor executes the Secure Monitor Call (SMC) the core enters Secure Monitor
mode to execute the Secure Monitor code. For more details on SMC and the Secure Monitor,
see The NS bit and Secure Monitor mode on page 2-4.

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 2-47
ID012310 Non-Confidential, Unrestricted Access

Programmer’s Model

Note

An attempt by a User process to execute an SMC makes the processor enter the Undefined
exception trap.

2.12.14 Undefined instruction

When an instruction is encountered that neither the processor, nor any coprocessor in the
system, can handle the processor takes the undefined instruction trap. Software can use this
mechanism to extend the ARM instruction set by emulating undefined coprocessor instructions.

After emulating the failed instruction, the trap handler executes the following instruction,
irrespective of the processor operating state:

MOVS PC,R14_und
This action restores the CPSR and returns to the next instruction after the undefined instruction.

IRQs are disabled when an undefined instruction trap occurs. For more information about
undefined instructions, see the ARM Architecture Reference Manual.

2.12.15 Breakpoint instruction (BKPT)

A breakpoint (BKPT) instruction operates as though the instruction causes a Prefetch Abort.

A breakpoint instruction does not cause the processor to take the Prefetch Abort exception until
the instruction reaches the Execute stage of the pipeline. If the instruction is not executed, for
example because a branch occurs while it is in the pipeline, the breakpoint does not take place.

After dealing with the breakpoint, the handler executes the following instruction irrespective of
the processor operating state:

SUBS PC,R14_abt,#4

This action restores both the PC and the CPSR, and retries the breakpointed instruction.

Note

If the EmbeddedICE-RT logic is configured into Halting debug-mode, a breakpoint instruction
causes the processor to enter Debug state. See Halting debug-mode debugging on page 13-50.

2.12.16 Exception vectors

The Secure Configuration Register bits [3:1] determine the mode that is entered when an IRQ,
a FIQ, or an external abort exception occur.

Three CP15 registers define the base address of the following vector tables:

o Non-secure, Non_Secure_Base_Address
. Secure, Secure_Base_Address
. Secure Monitor, Monitor_Base_Address.

If high vectors are enabled, Non_Secure_Base_Address and Secure_Base_ Address registers are
treated as being 0xFFFFO000, regardless of the value of these registers.
Exceptions occurring in Non-secure world

The following exceptions occur in the Non-secure world:
. Reset on page 2-49

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 2-48
Non-Confidential, Unrestricted Access

Programmer’s Model

. Undefined instruction

. Software Interrupt exception

. External Prefetch Abort on page 2-50

. Internal Prefetch Abort on page 2-50

. External Data Abort on page 2-50

. Internal Data Abort on page 2-51

. Interrupt request (IRQ) exception on page 2-51

. Fast Interrupt Request (FIQ) exception on page 2-52
. Secure Monitor Call Exception on page 2-52.

Reset
When Reset is de-asserted:

/+ Enter secure state %/

R14_svc = UNPREDICTABLE value

SPSR_svc = UNPREDICTABLE value

CPSR [4:0] = 0b10011 /+ Enter supervisor mode =/

CPSR [5] = O /+ Execute in ARM state =/

CPSR [6] = 1 /« Disable fast interrupts =/

CPSR [7] = 1 /« Disable interrupts =/

CPSR [8] = 1 /« Disable imprecise aborts =/

CPSR [9] = Secure EE-bit /x store value of Secure Control Register bit[25] =/

CPSR[24] = @ /+ Clear] bit =/
if high vectors configured then
PC = OxFFFF0000
else
PC = 0x00000000

Undefined instruction
On an undefined instruction:

/% Non-secure state is unchanged x/
R14_und = address of the next instruction after the undefined instruction
SPSR_und = CPSR
CPSR [4:0] = 0b11011 /= Enter undefined Instruction mode =/
CPSR [5] = @ /+ Execute in ARM state =/
CPSR [7] = 1 /« Disable interrupts =/
CPSR [9] = Non-secure EE-bit /x store value of NS Control Reg[25] =/
CPSR[24] = @ /+ Clear J bit =/
if high vectors configured then
PC = OxFFFFQ004
else
PC = Non_Secure_Base_Address + 0x00000004

Software Interrupt exception
On an SVC:

/% Non-secure state is unchanged x/

R14_svc = address of the next instruction after the SVC instruction
SPSR_svc = CPSR

CPSR [4:0] = 0b10011 /+ Enter supervisor mode =/

CPSR [5] = @ /« Execute in ARM state «/
CPSR [7] = 1 /+ Disable interrupts =/
CPSR [9] = Non-secure EE-bit /« store value of NS Control Reg[25] =/

CPSR[24] = @ /+ Clear] bit «/

if high vectors configured then
PC = OxFFFF0008

else

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 2-49
Non-Confidential, Unrestricted Access

Programmer’s Model

PC = Non_Secure_Base_Address + 0x00000008

External Prefetch Abort
On an external prefetch abort:

if SCR[3]=1 /+ external prefetch aborts trapped to Secure Monitor mode x/
R14_mon = address of the aborted instruction + 4
SPSR_mon = CPSR
CPSR [4:0] = 0b10110 /= Enter Secure Monitor mode =/

CPSR [5] = O /+ Execute in ARM state =/

CPSR [6] = 1 /« Disable fast interrupts =/

CPSR [7] = 1 /« Disable interrupts =/

CPSR [8] = 1 /« Disable imprecise aborts =/

CPSR [9] = Secure EE-bit /x store value of Secure Ctrl Reg bit[25] =/

CPSR[24] = 0 /x Clear J bit =/
PC = Monitor_Base_Address + 0x0000000C
Else
R14_abt = address of the aborted instruction + 4
SPSR_abt = CPSR
CPSR [4:0] = 0b10111 /+ Enter abort mode =/
CPSR [5] = @ /% Execute in ARM state =/
CPSR [7] = 1 /« Disable interrupts =/
If SCR[5]=1 (bit AW)
CPSR [8] = 1 /« Disable imprecise aborts =/
Else
CPSR [8] = UNCHANGED
CPSR [9] = Non-secure EE-bit /« store value of NS Control Reg[25] =/
CPSR[24] = @ /+ Clear J bit =/
if high vectors configured then
PC = OxFFFF00OC
else
PC = Non_Secure_Base_Address + 0x0000000C

Internal Prefetch Abort
On an internal prefetch abort:

/% Non-secure state is unchanged =/
R14_abt = address of the aborted instruction + 4
SPSR_abt = CPSR
CPSR [4:0] = 0b10111 /+ Enter abort mode x/
CPSR [5] = @ /+ Execute in ARM state =/
CPSR [7] = 1 /« Disable interrupts =/
If SCR[5]=1 (bit AW)
CPSR [8] = 1 /« Disable imprecise aborts =/
Else
CPSR [8] = UNCHANGED
CPSR [9] = Non-secure EE-bit /x store value of NS Control Reg[25] =/
CPSR[24] = @ /+ Clear J bit =/
if high vectors configured then
PC = OxFFFFQ@QC
else
PC = Non_Secure_Base_Address + 0x0000000C

External Data Abort
On an External Precise Data Abort or on an External Imprecise Abort with CPSR[8]=0 (A bit):

/+ Non-secure state is unchanged =/

if SCR[3]=1 /* external aborts trapped to Secure Monitor mode =/
R14_mon = address of the aborted instruction + 8
SPSR_mon = CPSR
CPSR [4:0] = 0b10110 /* Enter Secure Monitor mode =/

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 2-50
Non-Confidential, Unrestricted Access

Programmer’s Model

CPSR [5] = @ /+ Execute in ARM state =/

CPSR [6] = 1 /« Disable fast interrupts =/

CPSR [7] = 1 /« Disable interrupts =/

CPSR [8] = 1 /« Disable imprecise aborts =/

CPSR [9] = Secure EE-bit /x store value of secure Ctrl Reg bit[25] =/

CPSR[24] = 0 /% Clear J bit =/

Else /+ external Aborts trapped in abort mode =/
R14_abt = address of the aborted instruction + 8
SPSR_abt = CPSR
CPSR [4:0] = 0b10111 /+ Enter abort mode =/

CPSR [5] = @ /= Execute in ARM state =/
CPSR [7] = 1 /+ Disable interrupts =/
If SCR[5]=1 (bit AW)
CPSR [8] = 1 /« Disable imprecise aborts =/
Else
CPSR [8] = UNCHANGED
CPSR [9] = Non-secure EE-bit /+ store value of NS Control Reg[25] =/
CPSR[24] = @ /« Clear J bit x/
if high vectors configured then
PC = OxFFFF0010
else
PC = Non_Secure_Base_Address + 0x00000010

Internal Data Abort

On an Internal Data Abort. All aborts that are not external aborts, that is data aborts on L1
memory management occurring when a fault is detected in MMU:

/% Non-secure state is unchanged x/
R14_abt = address of the aborted instruction + 8
SPSR_abt = CPSR
CPSR [4:0] = 0b10111 /+ Enter abort mode x/
CPSR [5] = @ /+ Execute in ARM state =/
CPSR [7] = 1 /« Disable interrupts =/
If SCR[5]=1 (bit AW)
CPSR [8] = 1 /« Disable imprecise aborts «/
Else
CPSR [8] = UNCHANGED
CPSR [9] = Non-secure EE-bit /x store value of NS Control Reg[25] =/
CPSR[24] = @ /+ Clear J bit =/
if high vectors configured then
PC = OxFFFF0Q10
else
PC = Non_Secure_Base_Address + 0x00000010

Interrupt request (IRQ) exception
On an Interrupt Request, and CPSR[7]=0, I bit:

/% Non-secure state is unchanged =/

if SCR[1]=1 /+ IRQ trapped in Secure Monitor mode x/
R14_mon = address of the next instruction to be executed + 4
SPSR_mon = CPSR
CPSR [4:0] = 0b10110 /= Enter Secure Monitor mode =/

CPSR [5] = O /+ Execute in ARM state =/

CPSR [6] = 1 /« Disable fast interrupts =/

CPSR [7] = 1 /« Disable interrupts =/

CPSR [8] = 1 /« Disable imprecise aborts x/

CPSR [9] = Secure EE-bit /x store value of secure Ctrl Reg bit[25] =/

CPSR[24] = 0 /= Clear J bit =/
PC = Monitor_Base_Address + 0x00000018
else
R14_irq = address of the next instruction to be executed + 4
SPSR_irq = CPSR

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 2-51
ID012310 Non-Confidential, Unrestricted Access

Programmer’s Model

CPSR [4:0] = 0b10010 /+ Enter IRQ mode x/
CPSR [5] = @ /+ Execute in ARM state x/
CPSR [7] = 1 /« Disable interrupts =/
If SCR[5]= (bit AW)
CPSR [8] = 1 /+ Disable imprecise aborts =/
Else

CPSR [8] = UNCHANGED
CPSR [9] = Non-secure EE-bit /x store value of NS Control Reg[25] =/
CPSR[24] = @ /« Clear] bit =/
if VE == @ /+ Core with VIC port only =/
if high vectors configured then
PC = OxFFFF0018
else
PC = Non_Secure_Base_Address + 0x00000018
else
= TRQADDR

Fast Interrupt Request (FIQ) exception
On a Fast Interrupt Request, and CPSR[6]=0, F bit:

/% Non-secure state is unchanged =/

if SCR[2]=1 /+ FIQ trapped in Secure Monitor mode x/
R14_mon = address of the next instruction to be executed + 4
SPSR_mon = CPSR
CPSR [4:0] = 0b10001 /= Enter Secure Monitor mode =/

CPSR [5] = O /+ Execute in ARM state =/
CPSR [6] = 1 /« Disable fast interrupts =/
CPSR [7] = 1 /« Disable interrupts =/

CPSR [8] = 1 /« Disable imprecise aborts x/

CPSR [9] = Secure EE-bit /x store value of secure Ctrl Reg bit[25] =/
CPSR[24] = 0 /% Clear J bit =/
PC = Monitor_Base_Address + 0x0000001C

Else

/% SCR[4] (bit FW) must be set to avoid infinite Toop until FIQ is asserted =/
R14_fiq = address of the next instruction to be executed + 4
SPSR_fiq = CPSR
CPSR [4:0] = 0b10001 /= Enter FIQ mode =/

CPSR [5] = O /+ Execute in ARM state =/
CPSR [6] = 1 /« Disable fast interrupts =/
CPSR [7] = 1 /« Disable interrupts =/

If SCR[5]=1 (bit AW)
CPSR [8] = 1 /« Disable imprecise aborts =/
Else
CPSR [8] = UNCHANGED
CPSR [9] = Non-secure EE-bit /x store value of NS Control Reg[25] =/
CPSR[24] = 0 /« Clear J bit =/
if high vectors configured then
PC = OxFFFF00Q1C
else
PC = Non_Secure_Base_Address + 0x0000001C

Secure Monitor Call Exception
On a SMC:

If (UserMode) /= undefined instruction =/
R14_und = address of the next instruction after the SMC instruction
SPSR_und = CPSR
CPSR [4:0] = 0b11011 /+ Enter undefined instruction mode =/

CPSR [5] = @ /« Execute in ARM state «/
CPSR [7] = 1 /+ Disable interrupts =/
CPSR [9] = Non-secure EE-bit /« store value of NS Control Reg[25] =/

CPSR[24] = @ /« Clear J bit «/

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 2-52
Non-Confidential, Unrestricted Access

Programmer’s Model

If high vectors configured then
PC = OXFFFFO004
else
PC = Non_Secure_Base_Address + 0x00000004
else
R14_mon = address of the next instruction after the SMC instruction
SPSR_mon = CPSR
CPSR [4:0] = 0b10110 /= Enter Secure Monitor mode =/

CPSR [5] = O /+ Execute in ARM state =/

CPSR [6] = 1 /« Disable fast interrupts =/

CPSR [7] = 1 /« Disable interrupts =/

CPSR [8] = 1 /« Disable imprecise aborts x/

CPSR [9] = Secure EE-bit /x store value of secure Ctrl Reg bit[25] =/

CPSR[24] = @ /= Clear J bit x/
PC = Monitor_Base_Address + 0x00000008 /% SMC vectored to the =/
/«conventional SVC vector x/

Exceptions occurring in Secure world

The behavior in Secure state is identical to that in Non-secure state, except that
Secure_Base_Address is used instead of Non_Secure_Base_Address and that CPSR[6], F bit,
and CPSR[8], A bit, are updated regardless the bits [5:4] of the Secure Configuration Register.

Except Reset, the software model does not expect any other exception to occur in Secure
Monitor mode. However, if an exception occurs in Secure Monitor mode, the NS bit in SCR
register is automatically reset and the core branches either to the exception handler in Secure
world or in Secure Monitor mode, Secure Monitor mode for IRQ, FIQ or external aborts with
the corresponding bit set in SCR[3:1].

The following exceptions occur in the Secure world:
. Reset

. Undefined instruction on page 2-54

. Software Interrupt exception on page 2-54

. External Prefetch Abort on page 2-54

. Internal Prefetch Abort on page 2-55

. External Data Abort on page 2-50

. Internal Data Abort on page 2-55

. Interrupt request (IRQ) exception on page 2-56
. Fast Interrupt Request (FIQ) exception on page 2-56
. Secure Monitor Call Exception on page 2-57.

Reset
When Reset is de-asserted:

/% Stay in secure state %/

R14_svc = UNPREDICTABLE value

SPSR_svc = UNPREDICTABLE value

CPSR [4:0] = 0b10011 /+ Enter supervisor mode =/

CPSR [5] = @ /« Execute in ARM state «/
CPSR [6] = 1 /+ Disable fast interrupts =/
CPSR [7] = 1 /« Disable interrupts =/

CPSR [8] = 1 /« Disable imprecise aborts x/

CPSR [9] = Secure EE-bit /x store value of Secure Control Register bit[25] */
CPSR[24] = 0 /« Clear J bit x/
if high vectors configured then
PC = OxFFFF0000
else
PC = 0x00000000

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 2-53
Non-Confidential, Unrestricted Access

Programmer’s Model

Undefined instruction
On an undefined instruction:

/% secure state is unchanged «/
R14_und = address of the next instruction after the undefined instruction
SPSR_und = CPSR
CPSR [4:0] = 0b11011 /+ Enter undefined Instruction mode =/
CPSR [5] = @ /= Execute in ARM state =/
CPSR [7] = 1 /« Disable interrupts =/
CPSR [9] = Secure EE-bit /x store value of secure Control Reg[25] =/
CPSR[24] = 0 /x Clear J bit =/
if high vectors configured then
PC = OxFFFF0004
else
PC = Secure_Base_Address + 0x00000004

Software Interrupt exception
On a SVC:

/% secure state is unchanged =/
R14_svc = address of the next instruction after the SVC instruction
SPSR_svc = CPSR
CPSR [4:0] = 0b10011 /+ Enter supervisor mode x/
CPSR [5] = @ /+ Execute in ARM state =/
CPSR [7] = 1 /« Disable interrupts =/
CPSR [9] = Secure EE-bit /x store value of secure Control Reg[25] =/
CPSR[24] = @ /+ Clear J bit =/
if high vectors configured then
PC = OxFFFF0008
else
PC = Secure_Base_Address + 0x00000008

External Prefetch Abort
On an external prefetch abort:

/% secure state is unchanged «/

if SCR[3]=1 /* external prefetch aborts trapped to Secure Monitor mode x/
R14_mon = address of the aborted instruction + 4
SPSR_mon = CPSR
CPSR [4:0] = 0b10110 /= Enter Secure Monitor mode =/

CPSR [5] = @ /+ Execute in ARM state =/

CPSR [6] = 1 /« Disable fast interrupts =/

CPSR [7] = 1 /« Disable interrupts =/

CPSR [8] = 1 /+ Disable imprecise aborts x/

CPSR [9] = Secure EE-bit /x store value of secure Control Reg[25] =/

CPSR[24] = 0 /= Clear J bit =/
PC = Monitor_Base_Address + 0x0000000C
Else
R14_abt = address of the aborted instruction + 4
SPSR_abt = CPSR
CPSR [4:0] = 0b10111 /+ Enter abort mode =/

CPSR [5] = @ /+ Execute in ARM state x/
CPSR [7] = 1 /+ Disable interrupts =/
CPSR [8] = 1 /« Disable imprecise aborts x/

CPSR [9] = Secure EE-bit /x store value of secure Control Reg[25] =/
CPSR[24] = @ /+ Clear J bit =/
if high vectors configured then
PC = OxFFFFQ0OC
else
PC = Secure_Base_Address + 0x0000000C

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 2-54
Non-Confidential, Unrestricted Access

Programmer’s Model

Internal Prefetch Abort
On an internal prefetch abort:

/% secure state is unchanged «/
R14_abt = address of the aborted instruction + 4
SPSR_abt = CPSR
CPSR [4:0] = 0b10111 /+ Enter abort mode =/
CPSR [5] = @ /= Execute in ARM state =/
CPSR [7] = 1 /« Disable interrupts =/
CPSR [8] = 1 /« Disable imprecise aborts =/
CPSR [9] = Secure EE-bit /+ store value of secure Control Reg[25] =/
CPSR[24] = @ /+ Clear J bit =/
if high vectors configured then
PC = OxFFFF00OC
else
PC = Secure_Base_Address + 0x0000000C

External Data Abort
On an External Precise Data Abort or on an External Imprecise Abort with CPSR[8]=0 (A bit):

/% secure state is unchanged «/

if SCR[3]=1 /+ external aborts trapped to Secure Monitor mode =/
R14_mon = address of the aborted instruction + 8
SPSR_mon = CPSR
CPSR [4:0] = 0b10110 /= Enter Secure Monitor mode =/
CPSR [5] = @ /+ Execute in ARM state =/
CPSR [6] = 1 /« Disable fast interrupts =/
CPSR [7] = 1 /« Disable interrupts =/
CPSR [8] = 1 /« Disable imprecise aborts =/
CPSR [9] = Secure EE-bit /x store value of secure Control Reg[25] =/
CPSR[24] = @ /« Clear J bit x/
PC = Monitor_Base_Address + 0x00000010
Else /+ external Aborts trapped in abort mode =/
R14_abt = address of the aborted instruction + 8
SPSR_abt = CPSR
CPSR [4:0] = 0b10111 /+ Enter abort mode =/

CPSR [5] = @ /+ Execute in ARM state x/
CPSR [7] = 1 /+ Disable interrupts =/
CPSR [8] = 1 /« Disable imprecise aborts x/

CPSR [9] = Secure EE-bit /x store value of secure Control Reg[25] «/
CPSR[24] = 0 /+ Clear J bit =/
if high vectors configured then
PC = OxFFFF0010
else
PC = Secure_Base_Address + 0x00000010

Internal Data Abort

On an Internal Data Abort. All aborts that are not external aborts, i.e. data aborts on L1 memory
management occurring when a fault is detected in MMU:

/% secure state is unchanged «/

R14_abt = address of the aborted instruction + 8

SPSR_abt = CPSR

CPSR [4:0] = 0b10111 /+ Enter abort mode =/

CPSR [5] = @ /= Execute in ARM state =/

CPSR [7] = 1 /« Disable interrupts =/

CPSR [8] = 1 /+ Disable imprecise aborts =/

CPSR [9] = Secure EE-bit /# store value of secure Control Reg[25] =/
CPSR[24] = @ /+ Clear J bit =/

if high vectors configured then

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 2-55
Non-Confidential, Unrestricted Access

Programmer’s Model

PC = OxFFFF0Q10
else
PC

Secure_Base_Address + 0x00000010

Interrupt request (IRQ) exception
On an Interrupt Request, and CPSR[7]=0, I bit:

/% secure state is unchanged «/

if SCR[1]=1 /% IRQ trapped in Secure Monitor mode =/
R14_mon = address of the next instruction to be executed + 4
SPSR_mon = CPSR
CPSR [4:0] = 0b10110 /= Enter Secure Monitor mode =/

CPSR [5] = @ /« Execute in ARM state =/

CPSR [6] = 1 /+ Disable fast interrupts =/

CPSR [7] = 1 /« Disable interrupts =/

CPSR [8] = 1 /« Disable imprecise aborts x/

CPSR [9] = Secure EE-bit /x store value of secure Control Reg[25] +/

CPSR[24] = 0 /% Clear] bit =/
PC = Monitor_Base_Address + 0x00000018
else
R14_irq = address of the next instruction to be executed + 4
SPSR_irq = CPSR
CPSR [4:0] = 0b10010 /% Enter IRQ mode =/

CPSR [5] = @ /= Execute in ARM state =/

CPSR [7] = 1 /« Disable interrupts =/

CPSR [8] = 1 /« Disable imprecise aborts =/

CPSR [9] = Secure EE-bit /+ store value of secure Control Reg[25] =/
CPSR[24] = 0 /% Clear J bit =/

if VE == @ /« Core with VIC port only =/
if high vectors configured then
PC = OxFFFF0Q18
else
PC = Secure_Base_Address + 0x00000018
else
PC = IRQADDR

Fast Interrupt Request (FIQ) exception
On a Fast Interrupt Request, and CPSR[6]=0, F bit:

/% secure state is unchanged =/

if SCR[2]=1 /+ FIQ trapped in Secure Monitor mode x/
R14_mon = address of the next instruction to be executed + 4
SPSR_mon = CPSR
CPSR [4:0] = 0b10110 /* Enter Secure Monitor mode =/

CPSR [5] = @ /+ Execute in ARM state #/

CPSR [6] = 1 /+ Disable fast interrupts =/

CPSR [7] = 1 /« Disable interrupts x/

CPSR [8] = 1 /+ Disable imprecise aborts =/

CPSR [9] = Secure EE-bit /+ store value of secure Control Reg[25] =/

CPSR[24] = 0 /% Clear J bit =/
PC = Monitor_Base_Address + 0x0000001C
else
R14_fiq = address of the next instruction to be executed + 4
SPSR_fiq = CPSR
CPSR [4:0] = 0b10001 /= Enter FIQ mode =/

CPSR [5] = O /+ Execute in ARM state =/

CPSR [6] = 1 /« Disable fast interrupts =/

CPSR [7] = 1 /« Disable interrupts =/

CPSR [8] = 1 /« Disable imprecise aborts =/

CPSR [9] = Secure EE-bit /x store value of secure Control Reg[25] «/

CPSR[24] = @ /+ Clear] bit =/
if high vectors configured then

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 2-56
Non-Confidential, Unrestricted Access

PC = OxFFFF0Q1C
else
PC

Non_Secure_Base_Address + 0x0000001C

Secure Monitor Call Exception
On a SMC:

If (UserMode) /= undefined instruction =/

Programmer’s Model

R14_und = address of the next instruction after the SMC instruction

SPSR_und = CPSR

CPSR [4:0] = 0b11011 /+ Enter undefined instruction mode =/

CPSR [5] = @ /= Execute in ARM state =/
CPSR [7] = 1 /+ Disable interrupts =/
CPSR [9]
CPSR[24] = 0 /% Clear J bit =/
If high vectors configured then

PC = OxFFFFQ004
else

PC = Secure_Base_Address + 0x00000004

else

Secure EE-bit /+ store value of secure Control Reg[25] =/

R14_mon = address of the next instruction after the SMC instruction

SPSR_mon = CPSR
CPSR [4:0] = 0b10110 /x Enter Secure Monitor mode =/

CPSR [5] = @ /+ Execute in ARM state =/

CPSR [6] = 1 /« Disable fast interrupts =/

CPSR [7] = 1 /« Disable interrupts =/

CPSR [8] = 1 /« Disable imprecise aborts =/

CPSR [9] = Secure EE-bit /x store value of secure Control Reg[25] «/

CPSR[24] = @ /+ Clear J bit =/

PC = Monitor_Base_Address + 0x00000008 /% SMC vectored to the =/
/xconventional SVC vector =/

2.12.17 Exception priorities

When multiple exceptions arise at the same time, a fixed priority system determines the order

that they are handled. Table 2-9 lists the order of exception priorities.

Table 2-9 Exception priorities

Priority

Exception

Highest

Reset

Precise Data Abort

FIQ
IRQ

Prefetch Abort

Imprecise Data Abort

Lowest

BKPT

Undefined Instruction
SvC

SMC

Some exceptions cannot occur together:

. The BKPT, undefined instruction, SMC, and SVC exceptions are mutually exclusive.
Each corresponds to a particular, non-overlapping, decoding of the current instruction.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved.
Non-Confidential, Unrestricted Access

2-57

Programmer’s Model

. When FIQs are enabled, and a precise Data Abort occurs at the same time as an FIQ, the
processor enters the Data Abort handler, and proceeds immediately to the FIQ vector.
A normal return from the FIQ causes the Data Abort handler to resume execution.
Precise Data Aborts must have higher priority than FIQs to ensure that the transfer error
does not escape detection. You must add the time for this exception entry to the worst-case
FIQ latency calculations in a system that uses aborts to support virtual memory.
The FIQ handler must not access any memory that can generate a Data Abort, because the
initial Data Abort exception condition is lost if this happens.

Note
If the data abort is a precise external abort and bit 3 (EA) of SCR is set, the processor enters
Secure Monitor mode where aborts and FIQs are disabled automatically. Therefore, the
processor does not proceed to FIQ vector immediately afterwards.

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 2-58
ID012310 Non-Confidential, Unrestricted Access

Programmer’s Model

2.13 Software considerations

When using the processor you must consider the following software issues:
. Branch Target Address Cache flush
. Waiting for DMA to complete.

2.13.1 Branch Target Address Cache flush

When the processor switches from the Secure to the Non-secure state the Secure Monitor code
is responsible for flushing the BTAC if necessary. See About program flow prediction on
page 5-2 for more information.

2.13.2 Waiting for DMA to complete

When it is necessary to wait for the generation of an interrupt by the DMA indicating the
completion of a transfer between external memory and an Instruction TCM, the prioritization
between core requests from a tight-loop and the DMA can mean the DMA is locked out from
writing the TCM, so freezing the system. To avoid this, two mechanisms are recommended:

1. The use of the WFI operation in the wait-loop to freeze core execution while permitting
the DMA to continue. Standby mode is not entered in this case as the DMA keeps on
running and prevents this entry. See Standby mode on page 10-3 for more details.

2. Including at least five instructions, including NOP instructions, in the wait loop.

For details of the WFI operation see c7, Cache operations on page 3-69.

Note
In the ARM1176 instruction set, WFI is a valid instruction but is treated as a NOP.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 2-59
Non-Confidential, Unrestricted Access

Chapter 3
System Control Coprocessor

This chapter describes the purpose of the system control coprocessor, its structure, operation, and
how to use it. It contains the following sections:

. About the system control coprocessor on page 3-2
. System control processor registers on page 3-13.
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 3-1

ID012310 Non-Confidential, Unrestricted Access

System Control Coprocessor

3.1 About the system control coprocessor

The section gives an overall view of the system control coprocessor. For detail of the registers
in the system control coprocessor, see System control processor registers on page 3-13.

The purpose of the system control coprocessor, CP15, is to control and provide status
information for the functions implemented in the ARM1176JZF-S processor. The main
functions of the system control coprocessor are:

. overall system control and configuration

. cache configuration and management

. Tightly-Coupled Memory (TCM) configuration and management

. Memory Management Unit (MMU) configuration and management
. DMA control

. system performance monitoring.

The system control coprocessor does not exist in a distinct physical block of logic.

311 System control coprocessor functional groups

The system control coprocessor appears as a set of 32-bit registers that you can write to and read
from. Some of the registers permit more than one type of operation. The functional groups for
the registers are:

. System control and configuration on page 3-5
. MMU control and configuration on page 3-6

. Cache control and configuration on page 3-7
. TCM control and configuration on page 3-8

. Cache Master Valid Registers on page 3-8

. DMA control on page 3-9

. System performance monitor on page 3-10

. System validation on page 3-10.

The system control coprocessor controls the TrustZone operation of the processor:

. some of the registers are only accessible in the Secure world
. some of the registers are banked for Secure and Non-secure worlds
. some of the registers are common to both worlds.

Note

When Secure Monitor mode is active the core is in the Secure world. The processor treats all
accesses as Secure and the system control coprocessor behaves as if it operates in the Secure
world regardless of the value of the NS bit, see c/, Secure Configuration Register on page 3-52.
In Secure Monitor mode, the NS bit defines the copies of the banked registers in the system
control coprocessor that the processor can access:

NS=0 Access to Secure world CP15 registers
NS=1 Access to Non-secure world CP15 registers.

Registers that are only accessible in the Secure world are always accessible in Secure Monitor
mode, regardless of the value of the NS bit.

Table 3-1 on page 3-3 lists the overall functionality for the system control coprocessor as it
relates to its registers.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-2
Non-Confidential, Unrestricted Access

System Control Coprocessor

Table 3-2 on page 3-14 lists the registers in the system control processor in register order and
gives their reset values.

Table 3-1 System control coprocessor register functions

Function

Register/operation

Reference to description

System control
and configuration

Control

Auxiliary control

cl, Control Register on page 3-44

cl, Auxiliary Control Register on page 3-48

Secure Configuration

cl, Secure Configuration Register on page 3-52

Secure Debug Enable

cl, Secure Debug Enable Register on page 3-54

Non-Secure Access Control

cl, Non-Secure Access Control Register on page 3-55

Coprocessor Access Control

cl, Coprocessor Access Control Register on page 3-51

Secure or Non-secure Vector Base

Address

c12, Secure or Non-secure Vector Base Address Register on
page 3-121

Monitor Vector Base Address

ID code?

c12, Monitor Vector Base Address Register on page 3-122

c0, Main ID Register on page 3-20

Feature ID, CPUID scheme

c0, CPUID registers on page 3-26

MMU control and
configuration

TLB Type

c0, TLB Type Register on page 3-25

Translation Table Base 0

c2, Translation Table Base Register 0 on page 3-57

Translation Table Base 1

Translation Table Base Control

c2, Translation Table Base Register 1 on page 3-59

¢2, Translation Table Base Control Register on page 3-60

Domain Access Control

¢3, Domain Access Control Register on page 3-63

Data Fault Status

¢S, Data Fault Status Register on page 3-64

Instruction Fault Status

¢5, Instruction Fault Status Register on page 3-66

Fault Address

c6, Fault Address Register on page 3-68

Instruction Fault Address

Watchpoint Fault Address

6, Instruction Fault Address Register on page 3-69

¢6, Watchpoint Fault Address Register on page 3-69

TLB Operations

¢8, TLB Operations Register on page 3-86

TLB Lockdown

c10, TLB Lockdown Register on page 3-100

Memory Region Remap

c10, Memory region remap registers on page 3-101

Peripheral Port Memory Remap

c15, Peripheral Port Memory Remap Register on
page 3-130

Context ID c13, Context ID Register on page 3-128
FCSE PID c13, FCSE PID Register on page 3-126
Thread And Process ID c13, Thread and process ID registers on page 3-129
TLB Lockdown Access cl5, TLB lockdown access registers on page 3-149
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 3-3

Non-Confidential, Unrestricted Access

System Control Coprocessor

Table 3-1 System control coprocessor register functions (continued)

Function Register/operation Reference to description
Cachecontroland Cache Type c0, Cache Type Register on page 3-21
configuration
Cache Operations c7, Cache operations on page 3-69
Data Cache Lockdown ¢9, Data and instruction cache lockdown registers on
page 3-87
Instruction Cache Lockdown ¢9, Data and instruction cache lockdown registers on
page 3-87
Cache Behavior Override ¢9, Cache Behavior Override Register on page 3-97
TCM control and ~ TCM Status c0, TCM Status Register on page 3-24
configuration
Data TCM Region ¢9, Data TCM Region Register on page 3-89
Instruction TCM Region ¢9, Instruction TCM Region Register on page 3-91
Data TCM Non-secure Access ¢9, Data TCM Non-secure Control Access Register on
Control page 3-93
Instruction TCM Non-secure Access ¢9, Instruction TCM Non-secure Control Access Register on
Control page 3-94
TCM Selection ¢9, TCM Selection Register on page 3-96
Cache Master Instruction Cache Master Valid cl5, Instruction Cache Master Valid Register on page 3-147
Valid
Data Cache Master Valid cl5, Data Cache Master Valid Register on page 3-148
DMA control DMA Identification and Status cl1, DMA identification and status registers on page 3-106
DMA User Accessibility cll, DMA User Accessibility Register on page 3-107
DMA Channel Number cl1, DMA Channel Number Register on page 3-109
DMA enable cl1, DMA enable registers on page 3-110
DMA Control cl1, DMA Control Register on page 3-112
DMA Internal Start Address cll, DMA Internal Start Address Register on page 3-114
DMA External Start Address cll, DMA External Start Address Register on page 3-115
DMA Internal End Address cll, DMA Internal End Address Register on page 3-116
DMA Channel Status cl1, DMA Channel Status Register on page 3-117
DMA Context ID cl1, DMA Context ID Register on page 3-120
System Performance Monitor Control cl5, Performance Monitor Control Register on page 3-133
performance
monitor Cycle Counter cl5, Cycle Counter Register on page 3-137

Count Register 0

Count Register 1

c15, Count Register 0 on page 3-138

cl5, Count Register 1 on page 3-139

ARM DDI 0301H

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-4
Non-Confidential, Unrestricted Access

System Control Coprocessor

Table 3-1 System control coprocessor register functions (continued)

Function

Register/operation

Reference to description

System validation

Secure User and Non-secure Access

Validation Control

cl5, Secure User and Non-secure Access Validation Control
Register on page 3-132

System Validation Counter

cl5, System Validation Counter Register on page 3-140

System Validation Operations

cl5, System Validation Operations Register on page 3-142

System Validation Cache Size Mask

cl5, System Validation Cache Size Mask Register on
page 3-145

a. Returns device ID code.

3.1.2 System control and configuration

The purpose of the system control and configuration registers is to provide overall management

of:

TrustZone behavior

memory functionality

interrupt behavior

exception handling

program flow prediction

coprocessor access rights for CPO-CP13.

The system control and configuration registers also provide the processor ID.

The system control and configuration registers consist of three 32-bit read only registers and
eight 32-bit read/write registers. Figure 3-1 shows the arrangement of registers in this functional

ID Code Register

CPUID Registers

CPUID Registers

CPUID Registers

CPUID Registers

CPUID Registers

CPUID Registers

CPUID Registers

Control Register

Auxiliary Control Register

Coprocessor Access Control Register

Secure Configuration Register

Secure Debug Enable Register

Non-secure Access Control Register

Non-secure or Secure Vector Base Address Register

Monitor Vector Base Address Register

group.
CRn Opcode_1 CRm Opcode 2
c0 0 cO 00—
—c1———{0-7}
—c2———{0-7}—
—c3——{0-7}—
—c4——{0-7}—»
—c5———{0-7}»
—c6———{0-7}
—c7——{0-7}
c1 0 c0 00—
——1—»
—2—»
—c1 2—>
——1—
L—2—»p
c12 0 c0 00—
L |—1—>
cl 0—>

Interrupt Status Register

|:|Read-only |:|Read/write |:|Write-on|y Accessible in User mode

Figure 3-1 System control and configuration registers

To use the system control and configuration registers you read or write individual registers that
make up the group, see Use of the system control coprocessor on page 3-12.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-5
Non-Confidential, Unrestricted Access

System Control Coprocessor

Some of the functionality depends on how you set external signals at reset.

System control and configuration behaves in three ways:

as a set of flags or enables for specific functionality
as a set of numbers, values that indicate system functionality
as a set of addresses for processes in memory.

31.3 MMU control and configuration

The purpose of the MMU control and configuration registers is to:

allocate physical address locations from the Virtual Addresses (VAs) that the processor
generates.

control program access to memory.

designate areas of memory as either:
— noncacheable

— unbufferable

— noncacheable and unbufferable.

detect MMU faults and external aborts
hold thread and process IDs

provide direct access to the TLB lockdown entries.

The MMU control and configuration registers consist of one 32-bit read-only register, one 32-bit
write-only register, and 22 32-bit read/write registers. Figure 3-2 on page 3-7 shows the
arrangement of registers in this functional group.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-6
Non-Confidential, Unrestricted Access

CRn Opcode_1 CRm Opcode_2
c0 0 cO 33—
c2 0 cO 00—
b_.

2—>

c3 0 cO 0—>»
c5 0 cO 0—>»
L

c6 cO 0—>»
|:1—>

2—»

c8 0 »
c10 0 |_\,0 >
C2—— 00—

E1—>

c13 0 cO 00—
——1—»

——2—

——3—»

4—»

c15 0 c2 4—p
|—5 c4 2—>»
c5——2—»

Co———2—»

cl————2—»

System Control Coprocessor

TLB Type Register

Translation Table Base Register 0

Translation Table Base Register 1

Translation Table Base Control Register

Domain Access Control Register

Data Fault Status Register

Instruction Fault Status Register

Fault Address Register

Watchpoint Fault Address Register

Instruction Fault Address Register

TLB Operations Register

TLB Lockdown Register

Primary Region Remap Register }Memory region

Normal Memory Remap Register remap registers

FCSE PID Register

Context ID Register

User Read/Write Thread and Process ID Register Thread and
User Read Only Thread and Process ID Register process ID
Privileged Only Thread and Process ID Register registers
Peripheral Port Memory Remap Register

TLB Lockdown Index Register

TLB Lockdown VA Register TLB lockdown

TLB Lockdown PA Register access registers

TLB Lockdown Attributes Register

|:|Read-on|y |:|Read/write |:|Write-only Accessible in User mode

Figure 3-2 MMU control and configuration registers

To use the MMU control and configuration registers you read or write individual registers that
make up the group, see Use of the system control coprocessor on page 3-12.

MMU control and configuration behaves in three ways:

3.1.4 Cache control and configuration

as a set of numbers, values that describe aspects of the MMU or indicate its current state
as a set of addresses for tables in memory

as a set of operations that act on the MMU.

The purpose of the cache control and configuration registers is to:

provide information on the size and architecture of the instruction and data caches
control instruction and data cache lockdown

control cache maintenance operations that include clean and invalidate caches, drain and
flush buffers, and address translation

override cache behavior during debug or interruptible cache operations.

The cache control and configuration registers consist of one 32-bit read only register and four
32-bit read/write registers. Figure 3-3 on page 3-8 shows the arrangement of the registers in this
functional group.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-7

Non-Confidential, Unrestricted Access

System Control Coprocessor

CRn Opcode_1 CRm Opcode_2
c0 0 c0 1—> Cache Type Register
c7 0 » Cache Operations Register
c9 0 c0 00— Data Cache Lockdown Register
L |—1—> Instruction Cache Lockdown Register
c&———0—» Cache Behavior Override Register

|:| Read-only |:| Read/write |:|Write only Accessible in User mode

Figure 3-3 Cache control and configuration registers

To use the system control and configuration registers you read or write individual registers that
make up the group, see Use of the system control coprocessor on page 3-12.

Cache control and configuration registers behave as:

. a set of numbers, values that describe aspects of the caches
. a set of bits that enable specific cache functionality
. a set of operations that act on the caches.

3.1.5 TCM control and configuration

The purpose of the TCM control and configuration registers is to:
. inform the processor about the status of the TCM regions
. define TCM regions.

The TCM control and configuration registers consist of one 32-bit read-only register and five
32-bit read/write registers. Figure 3-4 shows the arrangement of registers.

CRn Opcode_1 CRm Opcode_2
c0

0 c0 2—» TCM Status Register
c9 0 c1 0—» Data TCM Region Register
11— Instruction TCM Region Register
2—> Data TCM Non-secure Access Control Register
33— Instruction TCM Non-secure Access Control Register
c2———0—> TCM Selection Register

|:|Read-only |:|Read/write |:|Write-only Accessible in User mode

Figure 3-4 TCM control and configuration registers

To use the system control and configuration registers you read or write individual registers that
make up the group, see Use of the system control coprocessor on page 3-12.

TCM control and configuration behaves in three ways:
. as a set of numbers, values that describe aspects of the TCMs
. as a set of bits that enable specific TCM functionality

as a set of addresses that define the memory locations of data stored in the TCMs.

3.1.6 Cache Master Valid Registers

The purpose of the Cache Master Valid Registers is to hold the state of the Master Valid bits of
the instruction and data caches.

The cache debug registers consist of two 32-bit read/write registers. Figure 3-5 on page 3-9
shows the arrangement of registers in this functional group.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-8
Non-Confidential, Unrestricted Access

3.1.7 DMA control

System Control Coprocessor

CRn Opcode_1 CRm Opcode_2
c15 3 |_ C&— > Instruction Cache Master Valid Register
c12———» Data Cache Master Valid Register

|:| Read-only |:| Read/write |:| Write-only Accessible in User mode

Figure 3-5 Cache Master Valid Registers

To use the Cache Master Valid Registers you read or write the individual registers that make up
the group, see Use of the system control coprocessor on page 3-12.

The Cache Master Valid Registers behave as a set of bits that define the cache contents as valid
or invalid. The number of bits is a function of the cache size.

The purpose of the DMA control registers is to:

. enable software to control DMA
. transfer large blocks of data between the TCM and an external memory
. determine accessibility

. select DMA channel.

The Enable, Control, Internal Start Address, External Start Address, Internal End Address,
Channel Status, and Context ID Registers are multiple registers with one register of each for
each channel that is implemented.

The DMA control registers consist of five 32-bit read-only registers, three 32-bit write-only
registers and seven 32-bit read/write registers. Figure 3-6 shows the arrangement of registers.

CRn Opcode_1 CRm Opcode_2

c11 0 cO 0—> Present
1—> Queued DMA Identification
2 Running and Status Registers
33— Interrupting
—Ccl——0—» DMA User Accessibility Register
—Cc2———0—», DMA Channel Number Register
—c3— — Stop
1_y Start DMA Enable
Registers
2—p Clear
One register per channel selected 0 DMA Control Register
by DMA Channel Number Register —C5——0—> DMA Internal Start Address Register
—C6———0—» DMA External Start Address Register
—Cc7/————0—» DMA Internal End Address Register
—Cc8———0—» DMA Channel Status Register
—C15———0—P DMA Context ID Register

|:| Read-only |:| Read/write |:|Write-only Accessible in User mode

Figure 3-6 DMA control and configuration registers

To use the DMA control and configuration registers you read or write the individual registers
that make up the group, see Use of the system control coprocessor on page 3-12.

Code can execute several DMA operations while in User mode if these operations are enabled
by the DMA User Accessibility Register.

If DMA control registers attempt to execute a privileged operation in User mode the processor
takes an Undefined instruction trap.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-9
Non-Confidential, Unrestricted Access

System Control Coprocessor

The DMA control registers operation specifies the block of data for transfer, the location of
where the transfer is to, and the direction of the DMA. For more details on the operation see
DMA on page 7-10.

DMA control behaves in four ways:

. as a set of numbers, values that describe aspects of the DMA channels or indicate their
current state

. as a set of bits that enable specific DMA functionality
. as a set of addresses that define the memory locations of data for transfer

. as a set of operations that act on the DMA channels.

3.1.8 System performance monitor

The purpose of the performance monitor registers is to:
. control the monitoring operation
° count events.

The system performance monitor consist of four 32-bit read/write registers. Figure 3-7 shows
the arrangement of registers in this functional group.

CRn Opcode_1 CRm Opcode_2

c15 0 c12 00— Performance Monitor Control Register
11— Cycle Counter Register
2—b Count Register 0
3—> Count Register 1

|:| Read-only |:| Read/write |:| Write-only Accessible in User mode

Figure 3-7 System performance monitor registers

To use the system performance monitor registers you read or write individual registers that make
up the group, see Use of the system control coprocessor on page 3-12.

Note
The counters are only enabled when the SPNIDEN input and the SUNIDEN bit, see c/, Secure
Debug Enable Register on page 3-54, are appropriately set. When the core is in a mode where
non-invasive debug is not permitted, events are not counted but the cycle count register, CCNT,
continues to count.

You can not use the system performance monitor registers at the same time as the system
validation registers, because both sets of registers use the same physical counters. You must
disable one set of registers before you start to use the other set. See System validation.

System performance monitoring counts system events, such as cache misses, TLB misses,
pipeline stalls, and other related features to enable system developers to profile the performance
of their systems. It can generate interrupts when the number of events reaches a given value.

3.1.9 System validation

The system validation registers extend the use of the system performance monitor registers to
provide some functions for validation and must not be used for other purposes. The system
validation registers schedule and clear:

. resets

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-10
Non-Confidential, Unrestricted Access

CRn

c15

System Control Coprocessor

. interrupts
. fast interrupts
. external debug requests.

The system validation registers consist of four 32-bit read/write registers. Figure 3-8 shows the
arrangement of registers.

Opcode_1 CRm Opcode_2
0 c9 00— Secure User and Non-secure Access Validation Control Register
c12 4—> Reset counter

—5—» Interrupt counter System Validation
——6—» Fast interrupt counter Counter Registers
— 77— External debug request counter

—0 c13 1T—> Start reset counter B
—2— Start interrupt counter
—3—» Start reset and interrupt counters

4—> Start fast interrupt counter
—5— Start reset and fast interrupt counters
——6—» Start interrupt and fast interrupt counters
—7—» Start reset, interrupt and fast interrupt counters System
1 c13 > Start external debug request counter Validation

—2 c13 1—> Stop reset counter Operations
—2—p| Stop interrupt counter Registers
—3—» Stop reset and interrupt counters

4—> Stop fast interrupt counter

—5— Stop reset and fast interrupt counters
——6—» Stop interrupt and fast interrupt counters
—7— Stop reset, interrupt and fast interrupt counters

—3 c13 »> Stop external debug request counter)

—0 c14 > System Validation Cache Size Mask Register

|:|Read-only |:|Read/write |:|Write-only Accessible in User mode

Figure 3-8 System validation registers

The System Validation Counter Register and System Validation Operations Register reuse the
Cycle Counter Register, Count Register 0, and Count Register 1, see System performance
monitor on page 3-10, to schedule resets, interrupts and fast interrupts respectively. External
debug requests are scheduled using an additional 6 bit counter that is not used by the System
performance monitor registers.

Each of the four counters counts upwards, and when the counter overflows, the corresponding
event occurs. To the core, the events are indistinguishable from ordinary external events. The
System Validation Registers provide functions for loading the counter registers with the
required number of clock cycles before the event occurs, and starting, stopping and clearing the
counters, to return them to their System performance monitor functionality.

The System Validation Registers are usually only accessible from Secure privileged modes, but
a Secure User and Non-secure Access Validation Control Register is provided to permit access
to the System Validation Registers from User modes and Non-secure modes.

The System Validation Cache Size Mask Register masks the physical size of the caches and
TCMs to make their size appear different to the processor. You can use this in validation by
simulation, but you must not use it in a manufactured device because it can corrupt correct
operation of the processor.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-11
Non-Confidential, Unrestricted Access

System Control Coprocessor

To use the system validation registers you read or write individual registers that make up the
group, see Use of the system control coprocessor.

You cannot use the System Validation Registers at the same time as the System Performance
Monitor Registers, because both sets of registers use the same physical counters. You must
disable one set of registers before starting to use the other set. See System performance monitor
on page 3-10.

System validation behaves in three ways:

. as a set of bits that enable specific system validation functionality

. as a set of operations that schedule and clear system validation events

. as a set of numbers, values that describe aspects of the caches and TCMs for system
validation.

3.1.10 Use of the system control coprocessor

This section describes the general method for use of the system control coprocessor.
You can access system control coprocessor CP15 registers with MRC and MCR instructions.

MCR{cond} P15,<Opcode_1>,<Rd>,<CRn>,<CRm>,<0pcode_2>
MRC{cond} P15,<Opcode_1>,<Rd>,<CRn>,<CRm>,<Opcode_2>

Figure 3-9 shows the instruction bit pattern of MRC and MCR instructions.

31 28 27 2423 212019 16 15 1211 8 7 5 4 3 0
Cond 111110 L CRn Rd 11111 1 CRm
Opcode_1 Opcode_2

Figure 3-9 CP15 MRC and MCR bit pattern

The CRn field of MRC and MCR instructions specifies the coprocessor register to access. The
CRm field and Opcode_2 fields specify a particular operation when addressing registers. The L
bit distinguishes between an MRC (L=1) and an MCR (L=0).

Instructions CDP, LDC, and STC, together with unprivileged MRC and MCR instructions to
privileged-only CP15 registers, and Non-secure accesses to Secure registers, cause the
processor to take the Undefined instruction trap.

Note

Attempting to read from a nonreadable register, or to write to a nonwriteable register causes
Undefined exceptions.

The Opcode_1, Opcode_2, and CRm fields Should Be Zero in all instructions that access CP15,
except when the values specified are used to select required operations. Using other values
results in Undefined exceptions.

In all cases, reading from or writing any data values to any CP15 registers, including those fields
specified as Unpredictable (UNP), Should Be One (SBO), or Should Be Zero (SBZ), does not
cause any physical damage to the chip.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-12
Non-Confidential, Unrestricted Access

System Control Coprocessor

3.2 System control processor registers

3.21 Register allocation

This section gives details of all the registers in the system control coprocessor. The section
presents a summary of the registers and detailed descriptions in register order of CRn,
Opcode_1, CRm, Opcode_2.

You can access CP15 registers with MRC and MCR instructions:

MCR{cond} P15,<Opcode_1>,<Rd>,<CRn>,<CRm>,<0pcode_2>
MRC{cond} P15,<Opcode_1>,<Rd>,<CRn>,<CRm>,<Opcode_2>

Table 3-2 on page 3-14 lists the allocation and reset values of the registers of the system control
coprocessor where:

CRan is the register number within CP15

Opl is the Opcode_1 value for the register

CRm is the operational register

Op2 is the Opcode_2 value for the register.

Type applies to the Secure, S, or the Non-secure, NS, world and is:

— B, registers banked in Secure and Non-secure worlds. If the registers are not banked
then they are common to both worlds or only accessible in one world.

— NA, no access

— RO, read-only access

— RO, read-only access in privileged modes only

— R/W, read/write access

— R/W, read/write access in privileged modes only

— WO, write-only access

— WO, write-only access in privileged modes only

— X, access depends on another register or external signal.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-13
Non-Confidential, Unrestricted Access

System Control Coprocessor

Table 3-2 Summary of CP15 registers and operations

CRn Op1 CRm Op2 Register or operation S type ::nsoe 5;?]? Page
c0 0 c0 0 Main ID RO RO Ox41xFB76x2 page 3-20
1 Cache Type RO RO 0x10152152b page 3-21
2 TCM Status RO RO 0x00020002¢ page 3-24
3 TLB Type RO RO 0x00000800 page 3-25
cl 0 Processor Feature 0 RO RO 0x00000111 page 3-26
1 Processor Feature 1 RO RO 0x00000011 page 3-27
2 Debug Feature 0 RO RO 0x00000033 page 3-29
3 Aucxiliary Feature O RO RO 0x00000000 page 3-30
4 Memory Model Feature 0 RO RO 0x01130003 page 3-31
5 Memory Model Feature 1 RO RO 0x10030302 page 3-32
6 Memory Model Feature 2 RO RO 0x01222100 page 3-33
7 Memory Model Feature 3 RO RO 0x00000000 page 3-35
c2 0 Instruction Set Feature RO RO 0x00140011 page 3-36
Attribute 0
1 Instruction Set Feature RO RO 0x12002111 page 3-37
Attribute 1
2 Instruction Set Feature RO RO 0x11231121 page 3-39
Attribute 2
3 Instruction Set Feature RO RO 0x01102131 page 3-40
Attribute 3
4 Instruction Set Feature RO RO 0x00001141 page 3-42
Attribute 4
5 Instruction Set Feature RO RO 0x00000000 page 3-43
Attribute 5
6-7 Reserved - - - -
c3-c7 - Reserved - - - -
cl 0 c0 0 Control R/W,B4, X R/W 0x00050078¢ page 3-44
1 Auxiliary Control R/W RO 0x00000007 page 3-48
2 Coprocessor Access Control R/W R/W 0x00000000 page 3-51
cl 0 Secure Configuration R/W NA 0x00000000 page 3-52
1 Secure Debug Enable R/W NA 0x00000000 page 3-54
2 Non-Secure Access Control R/W RO 0x00000000 page 3-55

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved.

Non-Confidential, Unrestricted Access

3-14

System Control Coprocessor

Table 3-2 Summary of CP15 registers and operations (continued)

CRn Op1 CRm Op2 Register or operation S type tr::)e Saelffet Page
c2 0 c0 0 Translation Table Base 0 R/W,B, X R/W 0x00000000 page 3-57
1 Translation Table Base 1 R/W, B R/W 0x00000000 page 3-59
2 Translation Table Base Control R/W,B,X R/W 0x00000000 page 3-60
c3 0 c0 0 Domain Access Control R/W,B,X R/W 0x00000000 page 3-63
c4 Not used
c5 0 c0 0 Data Fault Status R/W, B R/W 0x00000000 page 3-64
1 Instruction Fault Status R/W, B R/W 0x00000000 page 3-66
c6 0 c0 0 Fault Address R/W, B R/W 0x00000000 page 3-68
1 Watchpoint Fault Address R/W NA 0x00000000 page 3-69
2 Instruction Fault Address R/W, B R/W 0x00000000 page 3-69
c7 0 c0 4 Wait For Interrupt WO WO - page 3-85
c4 0 PA R/W, B R/W 0x00000000 page 3-80
¢S5 0 Invalidate Entire Instruction WO WO, X - page 3-71
Cache
1 Invalidate Instruction Cache WO WO - page 3-71
Line by MVA
2 Invalidate Instruction Cache WO WO - page 3-71
Line by Index
4 Flush Prefetch Buffer WO WO - page 3-79
6 Flush Entire Branch Target WO WO - page 3-79
Cache
7 Flush Branch Target Cache WO WO - page 3-79
Entry by MVA
cb 0 Invalidate Entire Data Cache WO NA - page 3-71
1 Invalidate Data Cache Line by WO WO - page 3-71
MVA
2 Invalidate Data Cache Line by WO WO - page 3-71
Index
c7 0 Invalidate Both Caches WO NA - page 3-71
c8 0-3 VA to PA translation in the WO WO - page 3-82
current world
4-7 VA to PA translation in the WO NA - page 3-83

other world

ARM DDI 0301H

ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved.

Non-Confidential, Unrestricted Access

3-15

System Control Coprocessor

Table 3-2 Summary of CP15 registers and operations (continued)

. . NS Reset
CRn Op1 CRm Op2 Register or operation S type type value Page
c7 0 cl0 0 Clean Entire Data Cache WO, X WO, X - page 3-71
1 Clean Data Cache Line by WO WO - page 3-71
MVA
2 Clean Data Cache Line by WO WO - page 3-71
Index
4 Data Synchronization Barrier WO WO - page 3-83
5 Data Memory Barrier WO WO - page 3-84
6 Cache Dirty Status RO, B RO 0x00000000 page 3-78
cl3 1 Prefetch Instruction Cache WO WO - page 3-71
Line
cl4 0 Clean and Invalidate Entire WO, X WO, X - page 3-71
Data Cache
1 Clean and Invalidate Data WO WO - page 3-71
Cache Line by MVA
2 Clean and Invalidate Data WO WO - page 3-71
Cache Line by Index
c8 0 c5 0 Invalidate Instruction TLB WO, B WO - page 3-86
unlocked entries
1 Invalidate Instruction TLB WO, B WO - page 3-86
entry by MVA
2 Invalidate Instruction TLB WO, B WO - page 3-86
entry on ASID match
c8 0 c6 0 Invalidate Data TLB unlocked =~ WO, B WO - page 3-86
entries
1 Invalidate Data TLB entry by WO, B WO - page 3-86
MVA
2 Invalidate Data TLB entry on WO, B WO - page 3-86
ASID match
c7 0 Invalidate unified TLB WO, B WO - page 3-86
unlocked entries
1 Invalidate unified TLB entry WO, B WO - page 3-86
by MVA
2 Invalidate unified TLB entry WO, B WO - page 3-86

on ASID match

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved.

Non-Confidential, Unrestricted Access

3-16

System Control Coprocessor

Table 3-2 Summary of CP15 registers and operations (continued)

CRn Op1 CRm Op2 Register or operation S type tr::)e s;zit Page
c9 0 c0 0 Data Cache Lockdown R/W R/W, X OxFFFFFFFO page 3-87
1 Instruction Cache Lockdown R/W R/W, X OxFFFFFFFO page 3-87
cl 0 Data TCM Region R/W, X R/W, X oxoo0000014f page 3-89
1 Instruction TCM Region R/W, X R/W, X 0x00000014¢ page 3-91
2 Data TCM Non-secure Control ~ R/W, X NA 0x00000000 page 3-93
Access
3 Instruction TCM Non-secure R/W, X NA 0x00000000 page 3-94
Control Access
c2 0 TCM Selection R/W, B R/W 0x00000000 page 3-96
c8 0 Cache Behavior Override R/Wh R/W 0x00000000 page 3-97
cl0 0 c0 0 TLB Lockdown R/W, X R/W, X 0x00000000 page 3-100
c2 0 Primary Region Memory R/W,B,X R/W 0x00098AA4 page 3-101
Remap Register
1 Normal Memory Region R/W,B,X R/W 0x44E0Q48E0 page 3-101
Remap Register
cll 0 c0 0-3 DMA identification and status RO RO, X 0x0000000B1 page 3-106
cl 0 DMA User Accessibility R/W R/W, X 0x00000000 page 3-107
c2 0 DMA Channel Number R/W, X R/W, X 0x00000000 page 3-109
c3 0-2 DMA enable WO, X WO, X - page 3-110
c4 0 DMA Control R/W, X R/W,X 0x08000000 page 3-112
cS 0 DMA Internal Start Address R/W, X R/W, X - page 3-114
cb 0 DMA External Start Address R/W, X R/W, X - page 3-115
c7 0 DMA Internal End Address R/W, X R/W, X - page 3-116
c8 0 DMA Channel Status RO, X RO, X 0x00000000 page 3-117
cl5 0 DMA Context ID R/W RW, X - page 3-120
cl2 0 c0 0 Secure or Non-secure Vector R/W,B, X R/W 0x00000000 page 3-121
Base Address
1 Monitor Vector Base Address R/W, X NA 0x00000000 page 3-122
cl 0 Interrupt Status RO RO 0x00000000) page 3-123

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved.

Non-Confidential, Unrestricted Access

3-17

System Control Coprocessor

Table 3-2 Summary of CP15 registers and operations (continued)

CRn Op1 CRm Op2 Register or operation S type tr::)e 5;?;? Page
cl3 0 c0 0 FCSE PID R/W,B,X R/W 0x00000000 page 3-126
1 Context ID R/W, B R/W 0x00000000 page 3-128
2 User Read/Write Thread and R/W, B R/W 0x00000000 page 3-129
Process ID
3 User Read-only Thread and R/W, RO, R/W, 0x00000000 page 3-129
Process ID Bk RO
4 Privileged Only Thread and R/W, B R/W 0x00000000 page 3-129
Process ID
cl4 Not used
cl5 0 c2 4 Peripheral Port Memory R/W,B,X R/W 0x00000000 page 3-130
Remap
c9 0 Secure User and Non-secure R/W, X NA 0x00000000 page 3-132
Access Validation Control
cl2 0 Performance Monitor Control R/W, X R/W, X 0x00000000 page 3-133
1 Cycle Counter R/W, X R/W,X 0x00000000 page 3-137
2 Count 0 R/W, X R/W,X 0x00000000 page 3-138
3 Count 1 R/W, X R/W,X 0x00000000 page 3-139
4-7 System Validation Counter R/W, X R/W,X 0x00000000 page 3-140
cl3 1-7 System Validation Operations R/W, X R/W, X 0x00000000 page 3-142
cl4 0 System Validation Cache Size =~ R/W, X R/W, X 0x00006655! page 3-145
Mask
cl5 1 cl3 0-7 System Validation Operations R/W, X R/W, X 0x00000000 page 3-142
cl5 2 cl3 1-7 System Validation Operations R/W, X R/W, X 0x00000000 page 3-142
cl5 3 c8 0-7 Instruction Cache Master Valid R/W, X NA 0x00000000 page 3-147
cl2 0-7 Data Cache Master Valid R/W, X NA 0x00000000 page 3-148
cl3 0-7 System Validation Operations R/W, X R/W,X 0x00000000 page 3-142
cl5 4 cl3 0-7 System Validation Operations R/W, X R/W, X 0x00000000 page 3-142
cl5 5 c4 2 TLB Lockdown Index R/W, X NA 0x00000000 page 3-149
c5 2 TLB Lockdown VA R/W, X NA - page 3-149
c6 2 TLB Lockdown PA R/W, X NA - page 3-149
c7 2 TLB Lockdown Attributes R/W, X NA - page 3-149
cl3 0-7 System Validation Operations R/W, X R/W,X 0x00000000 page 3-142
cl5 6 cl3 0-7 System Validation Operations R/W, X R/W, X 0x00000000 page 3-142
cl5 7 cl3 0-7 System Validation Operations R/W, X R/W, X 0x00000000 page 3-142

a.

See c0, Main ID Register on page 3-20 for the values of bits [23:20] and bits [3:0].

ARM DDI 0301H

ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved.

Non-Confidential, Unrestricted Access

3-18

o

w o e

— e

System Control Coprocessor

Reset value depends on the cache size implemented. The value here is for 16KB instruction and data caches.

Reset value depends on the number of TCM banks implemented. The value here is for 2 data TCM and 2 instruction TCM
banks.

Some bits in this register are banked and some Secure modify only.

Reset value depends on external signals.

Reset value depends on the TCM sizes implemented. The value here is for 1l6KB TCM banks.

Reset value depends on the TCM sizes implemented, and on the value of the INITRAM static configuration signal. The value
here is for 16KB TCM banks, with INITRAM tied LOW.

Some bits in this register are common and some Secure modify only.

Reset value depends on the number of DMA channels implemented and the presence of TCMs.

Reset value depends on external signals.

This register is read/write in Privileged modes and read-only on User mode.

Reset value depends on the cache and TCM sizes implemented. The value here is for 2 banks of 16KB instruction and data
TCMs and 16KB instruction and data caches.

Table 3-3 lists the operations available with MCRR operations:

MCRR{cond} P15,<Opcode_1>,<End Address>,<Start Address>,<CRm>

Table 3-3 Summary of CP15 MCRR operations

Op1 CRm Register or operation Stype NStype Resetvalue Page
0 c5 Invalidate instruction cache range WO WO - page 3-69
c6 Invalidate data cache range WO WO - page 3-69
cl2 Clean data cache range WO WO - page 3-69
cl4 Clean and invalidate data cache range =~ WO WO - page 3-69
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 3-19

ID012310

Non-Confidential, Unrestricted Access

System Control Coprocessor

3.2.2 c0, Main ID Register

The purpose of the Main ID Register is to return the device ID code that contains information
about the processor.

The Main ID Register is:

. in CP15 ¢0

. a 32 bit read-only register common to the Secure and Non-secure worlds
. accessible in privileged modes only.

Figure 3-10 shows the arrangement of bits in the register.

31 24 23 2019 16 15 4 3 0

Implementor Variant Architecture Primary part number Revision
number

Figure 3-10 Main ID Register format

The contents of the Main ID Register depend on the specific implementation. Table 3-4 lists
how the bit values correspond with the Main ID Register functions.

Table 3-4 Main ID Register bit functions

Bits Field name Function
[31:24] Implementor Indicates implementor, ARM Limited:
0x41
[23:20] Variant number The major revision number 7 in the rz part of the rnpn revision status.
0x0
[19:16] Architecture Indicates that the architecture is given in the CPUID registers:
OxF
[15:4] Primary part number Indicates part number, ARM1176JZF-S:
0xB76
[3:0] Revision The minor revision number 7 in the pn part of the rnprn revision status. For example:

for release rOp0: 0x0
for release rOp7: 0x7

Note

If an Opcode_2 value corresponding to an unimplemented or reserved ID register with CRm
equal to c0 and Opcode_1 = 0 is encountered, the system control coprocessor returns the value
of the main ID register.

Table 3-5 lists the results of attempted access for each mode.

Table 3-5 Results of access to the Main ID Register

Secure Privileged Non-secure Privileged
User
Read Write Read Write
Data Undefined exception = Data Undefined exception ~ Undefined exception

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-20

Non-Confidential, Unrestricted Access

System Control Coprocessor

To use the Main ID Register read CP15 with:
o Opcode_1 set to 0

. CRn set to c0

. CRm set to cO

o Opcode_2 set to 0.

For example:
MRC p15,0,<Rd>,c0,c0,0 ;Read Main ID Register

For more information on the processor features, see c0, CPUID registers on page 3-26.

3.2.3 0, Cache Type Register

The purpose of the Cache Type Register is to provide information about the size and architecture
of the cache for the operating system. This enables the operating system to establish how to
clean the cache and how to lock it down. Inclusion of this register enables RTOS vendors to
produce future-proof versions of their operating systems.

The Cache Type Register is:

. in CP15 c0
. a 32-bit read only register, common to Secure and Non-secure worlds
. accessible in privileged modes only.

All ARMVA4T and later cached processors contain this register. Figure 3-11 shows the
arrangement of bits in the Cache Type Register.

313029 28 2524232221 1817 151413121110 9 6 5 3210

0|00 Ctype S(P|O Size Assoc |M| Len [P |0 Size Assoc |M| Len

{ A)

Dsize Isize

Figure 3-11 Cache Type Register format

Table 3-6 lists how the bit values correspond with the Cache Type Register functions.

Table 3-6 Cache Type Register bit functions

Bits Field name Function

[31:29] - 0

[28:25] Ctype The Cache type and Separate bits provide information about the cache architecture.
b1110, indicates that the ARM1176JZF-S processor supports:
. write back cache
o Format C cache lockdown
. Register 7 cache cleaning operations.

[24] S bit S =1, indicates that the processor has separate instruction and data caches and not a unified
cache.

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 3-21

ID012310

Non-Confidential, Unrestricted Access

System Control Coprocessor

Table 3-6 Cache Type Register bit functions (continued)

Bits

Field name

Function

[23:12]

[23]

[22]

[21:18]

[17:15]

[14]

[13:12]

[11:0] Tsize
[11]
[10]
[9:6]
[5:3]
(2]
[1:0]

Dsize

Provides information about the size and construction of the Data cache.

Note
The ARM1176JZF-S processor does not support cache sizes of less than 4KB.

P bit

The P, Page, bit indicates restrictions on page allocation for bits [13:12] of the VA

For ARM1176JZF-S processors, the P bit is set if the cache size is greater than 16KB. For
more details see Restrictions on page table mappings page coloring on page 6-41.

0 = no restriction on page allocation.
1 =restriction applies to page allocation.

0

Size

Assoc

M bit

Len

The Size field indicates the cache size in conjunction with the M bit.
b0000 = 0.5KB cache, not supported

b0001 = 1KB cache, not supported

b0010 = 2KB cache, not supported

b0011 = 4KB cache

b0100 = 8KB cache

b0101 = 16KB cache

b0110 = 32KB cache

b0111 = 64KB cache

b1000 = 128KB cache, not supported.

b010, indicates that the ARM1176JZF-S processor has 4-way associativity. All other values
for Assoc are reserved.

Indicates the cache size and cache associativity values in conjunction with the Size and Assoc
fields.

In the ARM1176JZF-S processor the M bit is set to 0, for the Data and Instruction Caches.

b10, indicates that ARM1176JZF-S processor has a cache line length of 8 words, that is 32
bytes. All other values for Len are reserved.

Provides information about the size and construction of the Instruction cache.

Size

Assoc

Len

The functions of the Isize bit fields are the same as the equivalent Dsize bit fields and the Isize
values have the corresponding meanings.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved.
Non-Confidential, Unrestricted Access

3-22

System Control Coprocessor

Table 3-7 lists the results of attempted access for each mode.

Table 3-7 Results of access to the Cache Type Register

Secure Privileged Non-secure Privileged
User
Read Write Read Write

Data Undefined exception Data Undefined exception = Undefined exception

To use the Cache Type Register read CP15 with:
. Opcode_1 set to 0

. CRan set to cO

. CRm set to cO

. Opcode_2 set to 1.

For example:
MRC p15,0,<Rd>,c0,c0,1; returns cache details

Table 3-8, for example, lists the Cache Type Register values for an ARM1176JZF-S processor

with:

. separate instruction and data caches
. cache size = 16KB

. associativity = 4-way

. line length = eight words
. caches use write-back, CP15 c7 for cache cleaning, and Format C for cache lockdown.

Table 3-8 Example Cache Type Register format

Bits Field name Value Behavior

[31:29] Reserved b000

[28:25] Ctype b1110

[24] S bl Harvard cache

[23] Dsize P b0

[22] Reserved b0

[21:18] Size b0101 16KB

[17:15] Assoc b010 4-way

[14] M b0

[13:12] Len bl10 8 words per line, 32 bytes

[11] Isize P b0

[10] Reserved b0

[9:6] Size b0101 16KB

[5:3] Assoc b010 4-way

[2] M b0

[1:0] Len bl10 8 words per line, 32 bytes
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 3-23

ID012310 Non-Confidential, Unrestricted Access

System Control Coprocessor

3.24 c0, TCM Status Register

The purpose of the TCM Status Register is to inform the system about the number of Instruction
and Data TCMs available in the processor.

Table 3-9 lists the purposes of the individual bits in the TCM Status Register.

Note

In the ARM1176JZF-S processor there is a maximum of two Instruction TCMs and two Data
TCMs.

The TCM Status Register is:

. in CP15 c0
. a 32-bit read-only register common to Secure and Non-secure worlds
. accessible in privileged modes only.

Figure 3-12 shows the bit arrangement for the TCM Status Register.

313029 28 1918 1615 3 2 0

0|ofo SBZ/UNP DTCM SBZ/UNP ITCM

Figure 3-12 TCM Status Register format
Table 3-9 lists how the bit values correspond with the TCM Status Register functions.

Table 3-9 TCM Status Register bit functions

Bits Field name Function

[31:29] - Always b00O0.

[28:19] - UNP/SBZ

[18:16] DTCM Indicates the number of Data TCM banks implemented.

b000 = 0 Data TCMs
b001 = 1 Data TCM
b010 = 2 Data TCMs
All other values reserved

[15:3] - UNP/SBZ

[2:0] ITCM Indicates the number of Instruction TCM banks implemented.
b000 = 0 Instruction TCMs
b001 = 1 Instruction TCM
b010 = 2 Instruction TCMs
All other values reserved

Attempts to write the TCM Status Register or read it in User modes result in Undefined
exceptions.

To use the TCM Status Register read CP15 with:
. Opcode_1 set to 0

. CRn set to c0

. CRm set to cO

. Opcode_2 set to 2.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-24
Non-Confidential, Unrestricted Access

System Control Coprocessor

For example:

MRC p15,0,<Rd>,c0,c0,2 ; returns TCM status register

3.2.5 c0, TLB Type Register

The purpose of the TLB Type Register is to return the number of lockable entries for the TLB.

The TLB has 64 entries organized as a unified two-way set associative TLB. In addition, it has
eight lockable entries that the read-only TLB Type Register specifies.

The TLB Type Register is:

. in CP15 c0

. a 32-bit read only register common to the Secure and Non-secure worlds
. accessible in privileged modes only.

Figure 3-13 shows the bit arrangement for the TLB Type Register.

31 24 23 16 15 8 7 10

SBZ/UNP ILsize DLsize SBZ/UNP U

Figure 3-13 TLB Type Register format

Table 3-10 lists how the bit values correspond with the TLB Type Register functions.

Table 3-10 TLB Type Register bit functions

Bits Field name Function
[31:24] - UNP/SBZ
[23:16] ILsize Instruction lockable size specifies the number of instruction TLB lockable entries
0, indicates that the ARM1176JZF-S processor has a unified TLB
[15:8] DLsize Data lockable size specifies the number of unified or data TLB lockable entries
0x08, indicates the ARM1176JZF-S processors has 8 unified TLB lockable entries
[7:1] - UNP/SBZ
[0] U Unified specifies if the TLB is unified, 0, or if there are separate instruction and data TLBs, 1.

0, indicates that the ARM1176JZF-S processor has a unified TLB

Table 3-11 lists the results of attempted access for each mode.

Table 3-11 Results of access to the TLB Type Register

Secure Privileged Non-secure Privileged
User
Read Write Read Write

Data Undefined exception Data Undefined exception = Undefined exception

To use the TLB Type Register read CP15 with:
o Opcode_1 set to 0

. CRn set to c0

. CRm set to cO

o Opcode_2 set to 3.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-25
Non-Confidential, Unrestricted Access

System Control Coprocessor

For example:

MRC p15,0,<Rd>,c0,c0,3 ; returns TLB details

3.2.6 c0, CPUID registers
The section describes the CPUIID registers:

o c0, Processor Feature Register 0

. c0, Processor Feature Register I on page 3-27

. c0, Debug Feature Register 0 on page 3-29

. c0, Auxiliary Feature Register 0 on page 3-30

. c0, Memory Model Feature Register 0 on page 3-31

. c0, Memory Model Feature Register 1 on page 3-32

. c0, Memory Model Feature Register 2 on page 3-33

. c0, Memory Model Feature Register 3 on page 3-35

. 0, Instruction Set Attributes Register 0 on page 3-36
. c0, Instruction Set Attributes Register 1 on page 3-37
. c0, Instruction Set Attributes Register 2 on page 3-39
. c0, Instruction Set Attributes Register 3 on page 3-40
. c0, Instruction Set Attributes Register 4 on page 3-42
. c0, Instruction Set Attributes Register 5 on page 3-43.

Note
The CPUID registers are sometimes described as the Core Feature ID registers.

c0, Processor Feature Register 0

The purpose of the Processor Feature Register O is to provide information about the execution
state support and programmer’s model for the processor.

Processor Feature Register 0 is:

. in CP15 ¢0
. a 32-bit read-only register common to the Secure and Non-secure worlds
. accessible in privileged modes only.

Table 3-12 lists how the bit values correspond with the Processor Feature Register O functions.

Figure 3-14 shows the bit arrangement for Processor Feature Register 0.

31 28 27 24 23 2019 16 15 121 8 7 4 3 0

Reserved | Reserved | Reserved | Reserved State3 State2 State1 State0

Figure 3-14 Processor Feature Register 0 format

Table 3-12 Processor Feature Register 0 bit functions

Bits Field name Function
[31:28] - Reserved. RAZ.
[27:24] - Reserved. RAZ.
[23:20] - Reserved. RAZ.
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 3-26

ID012310 Non-Confidential, Unrestricted Access

System Control Coprocessor

Table 3-12 Processor Feature Register 0 bit functions (continued)

Bits Field name Function
[19:16] - Reserved. RAZ.
[15:12] State3 Indicates support for Thumb-2™ execution environment.

0x0, ARM1176JZF-S processors do not support Thumb-2.

[11:8] State2 Indicates support for Java extension interface.
0x1, ARM1176JZF-S processors support Java.

[7:4] Statel Indicates type of Thumb encoding that the processor supports.
0x1, ARM1176JZF-S processors support Thumb-1 but do not support Thumb-2.

[3:0] State0 Indicates support for 32-bit ARM instruction set.
0x1, ARM1176JZF-S processors support 32-bit ARM instructions.

Table 3-13 lists the results of attempted access for each mode.

Table 3-13 Results of access to the Processor Feature Register 0

Secure Privileged Non-secure Privileged
User
Read Write Read Write

Data Undefined exception Data Undefined exception Undefined exception

To use the Processor Feature Register 0 read CP15 with:
. Opcode_1 set to 0

. CRn set to c0

. CRm settocl

. Opcode_2 set to 0.

For example:

MRC p15, 0, <Rd>, c@, cl, O ;Read Processor Feature Register 0

c0, Processor Feature Register 1

The purpose of the Processor Feature Register 1 is to provide information about the execution
state support and programmer’s model for the processor.

Processor Feature Register 1 is:

. in CP15 ¢0
. a 32-bit read-only register common to the Secure and Non-secure worlds
. accessible in privileged modes only.

Figure 3-15 on page 3-28 shows the bit arrangement for Processor Feature Register 1.

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 3-27
ID012310 Non-Confidential, Unrestricted Access

31 28 27 2423 20

19 16

15 12

11

System Control Coprocessor

Reserved

Reserved

Reserved

Reserved

Reserved

Microcontroller programmer's model:(_/

Security extension
Programmer's model

Figure 3-15 Processor Feature Register 1 format

Table 3-14 lists how the bit values correspond with the Processor Feature Register 1 functions.

Table 3-14 Processor Feature Register 1 bit functions

Bits Field name Function

[31:28] - Reserved. RAZ

[27:24] - Reserved. RAZ.

[23:20] - Reserved. RAZ.

[19:16] - Reserved. RAZ.

[15:12] - Reserved. RAZ.

[11:8] Microcontroller programmer’s model Indicates support for the ARM microcontroller programmer’s model.
0x0, Not supported by ARM1176JZF-S processors.

[7:4] Security extension Indicates support for Security Extensions Architecture v1.
0x1, ARM1176JZF-S processors support Security Extensions
Architecture v1, TrustZone.

[3:0] Programmer’s model Indicates support for standard ARMv4 programmer’s model.

0x1, ARM1176JZF-S processors support the ARMv4 model.

Table 3-15 lists the results of attempted access for each mode.

Table 3-15 Results of access to the Processor Feature Register 1

Secure Privileged

Read Write

Non-secure Privileged

Read Write

User

Data Undefined exception Data

Undefined exception = Undefined exception

To use the Processor Feature Register 1 read CP15 with:
. Opcode_1 set to 0
. CRn set to cO
. CRm settocl
. Opcode_2 set to 1.

For example:

MRC p15, @, <Rd>, c@, cl, 1 ;Read Processor Feature Register 1

ARM DDI 0301H

ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved.
Non-Confidential, Unrestricted Access

3-28

System Control Coprocessor

c0, Debug Feature Register 0

The purpose of the Debug Feature Register 0 is to provide information about the debug system
for the processor.

Debug Feature Register O is:

. in CP15 ¢0
. a 32-bit read-only register common to the Secure and Non-secure worlds
. accessible in privileged modes only.

Figure 3-16 shows the bit arrangement for Debug Feature Register O.

31 28 27 24 23 2019 16 15 1221 8 7 4 3 0

Reserved | Reserved - - - - - -

Figure 3-16 Debug Feature Register 0 format

Table 3-16 lists how the bit values correspond with the Debug Feature Register O functions.

Table 3-16 Debug Feature Register 0 bit functions

Bits

Field name Function

[31:28]

[27:24]

Reserved. RAZ.

Reserved. RAZ.

[23:20]

Indicates the type of memory-mapped microcontroller debug model that the processor
supports.

0x0, ARM1176JZF-S processors do not support this debug model.

[19:16]

Indicates the type of memory-mapped Trace debug model that the processor supports.
0x0, ARM1176JZF-S processors do not support this debug model.

[15:12]

Indicates the type of coprocessor-based Trace debug model that the processor supports.
0x0, ARM1176JZF-S processors do not support this debug model.

[11:8]

Indicates the type of embedded processor debug model that the processor supports.
0x0, ARM1176JZF-S processors do not support this debug model.

[7:4]

Indicates the type of Secure debug model that the processor supports.
0x3, ARM1176JZF-S processors support the v6.1 Secure debug architecture based model.

[3:0]

Indicates the type of applications processor debug model that the processor supports.
0x3, ARM1176JZF-S processors support the v6.1 debug model.

Table 3-17 lists the results of attempted access for each mode.

Table 3-17 Results of access to the Debug Feature Register 0

Secure Privileged Non-secure Privileged
User
Read Write Read Write

Data Undefined exception Data Undefined exception = Undefined exception

To use the Debug Feature Register 0 read CP15 with:
. Opcode_1 set to 0

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-29
Non-Confidential, Unrestricted Access

System Control Coprocessor

. CRn set to cO
o CRm set to cl
. Opcode_2 set to 2.

For example:

MRC pl5, @, <Rd>, c@, cl, 2 ;Read Debug Feature Register 0

c0, Auxiliary Feature Register 0

The purpose of the Auxiliary Feature Register 0 is to provide additional information about the
features of the processor.

The Auxiliary Feature Register 0 is:

. in CP15 c0
. a 32-bit read-only register common to the Secure and Non-secure worlds
. accessible in privileged modes only.

Table 3-18 lists how the bit values correspond with the Auxiliary Feature Register O functions.

Table 3-18 Auxiliary Feature Register 0 bit functions

Bits Field name Function

[31:16] - Reserved. RAZ.

[15:12] - Implementation Defined.
[11:8] - Implementation Defined.
[7:4] - Implementation Defined.
[3:0] - Implementation Defined.

The contents of the Auxiliary Feature Register 0 [31:16] are Reserved. The contents of the
Aucxiliary Feature Register 0 [15:0] are Implementation Defined. In the ARM1176JZF-S
processor, the Auxiliary Feature Register O reads as 9x00000000.

Table 3-19 lists the results of attempted access for each mode.

Table 3-19 Results of access to the Auxiliary Feature Register 0

Secure Privileged Non-secure Privileged
User
Read Write Read Write

Data Undefined exception Data Undefined exception Undefined exception

To use the Auxiliary Feature Register 0 read CP15 with:
. Opcode_1 set to 0

. CRn set to cO

. CRm settocl

. Opcode_2 set to 3.

For example:

MRC p15, @, <Rd>, c@, cl, 3 ;Read Auxiliary Feature Register 0.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-30
Non-Confidential, Unrestricted Access

cO,

System Control Coprocessor

Memory Model Feature Register 0

The purpose of the Memory Model Feature Register 0 is to provide information about the
memory model, memory management, cache support, and TLB operations of the processor.

The Memory Model Feature Register O is:

in CP15 ¢0
a 32-bit read-only register common to the Secure and Non-secure worlds
accessible in privileged modes only.

Figure 3-17 shows the bit arrangement for Memory Model Feature Register 0.

31 28 27 24 23 2019 16 15 1221 8 7 4 3 0

Reserved - - - - - - -

Figure 3-17 Memory Model Feature Register 0 format

Table 3-20 lists how the bit values correspond with the Memory Model Feature Register O

functions.
Table 3-20 Memory Model Feature Register 0 bit functions
Bits Field name Function
[31:28] - Reserved. RAZ.
[27:24] - Indicates support for FCSE.
0x1, ARM1176JZF-S processors support FCSE.
[23:20] - Indicates support for the ARMv6 Auxiliary Control Register.
0x1, ARM1176JZF-S processors support the Auxiliary Control Register.
[19:16] - Indicates support for TCM and associated DMA.
0x3, ARM1176JZF-S processors support ARMv6 TCM and DMA.
[15:12] - Indicates support for cache coherency with DMA agent, shared memory.
0x0, ARM1176JZF-S processors do not support this model.
[11:8] - Indicates support for cache coherency support with CPU agent, shared memory.
0x0, ARM1176JZF-S processors do not support this model.
[7:4] - Indicates support for Protected Memory System Architecture (PMSA).
0x0, ARM1176JZF-S processors do not support PMSA
[3:0] - Indicates support for Virtual Memory System Architecture (VMSA).

0x3, ARM1176JZF-S processors support:
. VMSA v7 remapping and access flag.

Table 3-21 lists the results of attempted access for each mode.

Table 3-21 Results of access to the Memory Model Feature Register 0

Secure Privileged Non-secure Privileged
User
Read Write Read Write

Data Undefined exception — Data Undefined exception = Undefined exception

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-31
Non-Confidential, Unrestricted Access

System Control Coprocessor

To use the Memory Model Feature Register O read CP15 with:
o Opcode_1 set to 0

. CRn set to c0

. CRm ssettocl

o Opcode_2 set to 4.

For example:

MRC pl15, @, <Rd>, c@, cl, 4 ;Read Memory Model Feature Register 0.

c0, Memory Model Feature Register 1

The purpose of the Memory Model Feature Register 1 is to provide information about the
memory model, memory management, cache support, and TLB operations of the processor.

The Memory Model Feature Register 1 is:

. in CP15 ¢c0
. a 32-bit read-only register common to the Secure and Non-secure worlds
. accessible in privileged modes only.

Figure 3-18 shows the bit arrangement for Memory Model Feature Register 1.

31 28 27 24 23 2019 16 15 121 8 7 4 3 0

Figure 3-18 Memory Model Feature Register 1 format

Table 3-22 lists how the bit values correspond with the Memory Model Feature Register 1
functions.

Table 3-22 Memory Model Feature Register 1 bit functions

Bits

Field
name

Function

[31:28]

Indicates support for branch target buffer.
0x1, ARM1176JZF-S processors require flushing of branch predictor on VA change.

[27:24]

[23:20]

Indicates support for test and clean operations on data cache, Harvard or unified architecture.
0x0, no support in ARM1176JZF-S processors.

Indicates support for level one cache, all maintenance operations, unified architecture.
0x0, no support in ARM1176JZF-S processors.

[19:16]

Indicates support for level one cache, all maintenance operations, Harvard architecture.
0x3, ARM1176JZF-S processors support:

. invalidate instruction cache including branch prediction

. invalidate data cache

. invalidate instruction and data cache including branch prediction

. clean data cache, recursive model using cache dirty status bit

. clean and invalidate data cache, recursive model using cache dirty status bit.

[15:12]

Indicates support for level one cache line maintenance operations by Set/Way, unified architecture.
0x0, no support in ARM1176JZF-S processors.

ARM DDI 0301H

ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-32
Non-Confidential, Unrestricted Access

System Control Coprocessor

Table 3-22 Memory Model Feature Register 1 bit functions (continued)

Bits

Field
name

Function

[11:8]

[7:4]

Indicates support for level one cache line maintenance operations by Set/Way, Harvard architecture.
0x3, ARM1176JZF-S processors support:
. clean data cache line by Set/Way

. clean and invalidate data cache line by Set/Way
. invalidate data cache line by Set/Way
. invalidate instruction cache line by Set/Way.

Indicates support for level one cache line maintenance operations by MVA, unified architecture.
0, no support in ARM1176JZF-S processors.

[3:0]

Indicates support for level one cache line maintenance operations by MVA, Harvard architecture.
0x2, ARM1176JZF-S processors support:

. clean data cache line by MVA

. invalidate data cache line by MVA

. invalidate instruction cache line by MVA

. clean and invalidate data cache line by MVA

. invalidation of branch target buffer by MVA.

Table 3-23 lists the results of attempted access for each mode.

Table 3-23 Results of access to the Memory Model Feature Register 1

Secure Privileged Non-secure Privileged
User
Read Write Read Write
Data Undefined exception Data Undefined exception ~ Undefined exception

To use the Memory Model Feature Register 1 read CP15 with:
o Opcode_1 set to 0

. CRn set to cO

. CRm set to cl

o Opcode_2 set to 5.

For example:

MRC pl15, @, <Rd>, c@, cl, 5 ;Read Memory Model Feature Register 1.

c0, Memory Model Feature Register 2

The purpose of the Memory Model Feature Register 2 is to provide information about the
memory model, memory management, cache support, and TLB operations of the processor.

The Memory Model Feature Register 2 is:

. in CP15 ¢c0
. a 32-bit read-only register common to the Secure and Non-secure worlds
. accessible in privileged modes only.

Figure 3-19 on page 3-34 shows the bit arrangement for Memory Model Feature Register 2.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-33
Non-Confidential, Unrestricted Access

31

System Control Coprocessor

28 27 2423 2019 16 15 1211 8 7 4 3 0

Figure 3-19 Memory Model Feature Register 2 format

Table 3-24 lists how the bit values correspond with the Memory Model Feature Register 2

functions.

Table 3-24 Memory Model Feature Register 2 bit functions

Bits

Field name

Function

[31:28]

Indicates support for a Hardware access flag.
0x0, no support in ARM1176JZF-S processors.

[27:24]

Indicates support for Wait For Interrupt stalling.
0x1, ARM1176JZF-S processors support Wait For Interrupt.

[23:20]

Indicates support for memory barrier operations.
0x2, ARM1176JZF-S processors support:

. Data Synchronization Barrier

. Prefetch Flush

. Data Memory Barrier.

[19:16]

Indicates support for TLB maintenance operations, unified architecture.
0x2, ARM1176JZF-S processors support:

. invalidate all entries

. invalidate TLB entry by MVA

. invalidate TLB entries by ASID match.

[15:12]

[11:8]

[7:4]

Indicates support for TLB maintenance operations, Harvard architecture.
0x2, ARM1176JZF-S processors support:

o invalidate instruction and data TLB, all entries

o invalidate instruction TLB, all entries

. invalidate data TLB, all entries

. invalidate instruction TLB by MVA

. invalidate data TLB by MVA

. invalidate instruction and data TLB entries by ASID match

. invalidate instruction TLB entries by ASID match

. invalidate data TLB entries by ASID match.

Indicates support for cache maintenance range operations, Harvard architecture.
0x1, ARM1176JZF-S processors support:

. invalidate data cache range by VA

. invalidate instruction cache range by VA

. clean data cache range by VA

. clean and invalidate data cache range by VA.

Indicates support for background prefetch cache range operations, Harvard architecture.
0x0, no support in ARM1176JZF-S processors.

[3:0]

Indicates support for foreground prefetch cache range operations, Harvard architecture.
0x0, no support in ARM1176JZF-S processors.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-34

Non-Confidential, Unrestricted Access

System Control Coprocessor

Table 3-25 lists the results of attempted access for each mode.

Table 3-25 Results of access to the Memory Model Feature Register 2

Secure Privileged Non-secure Privileged
User
Read Write Read Write

Data Undefined exception Data Undefined exception Undefined exception

To use the Memory Model Feature Register 2 read CP15 with:
. Opcode_1 set to 0

. CRn set to cO

. CRm setto cl

. Opcode_2 set to 6.

For example:

MRC pl5, @, <Rd>, c@, cl, 6 ;Read Memory Model Feature Register 2.

c0, Memory Model Feature Register 3

The purpose of the Memory Model Feature Register 3 is to provide information about the
memory model, memory management, cache support, and TLB operations of the processor.

The Memory Model Feature Register 3 is:

. in CP15 c0
. a 32-bit read-only register common to the Secure and Non-secure worlds
. accessible in privileged modes only.

Figure 3-20 shows the bit arrangement for Memory Model Feature Register 3.

31 28 27 24 23 2019 16 15 121 8 7 4 3 0

Reserved | Reserved | Reserved | Reserved | Reserved | Reserved - -

Figure 3-20 Memory Model Feature Register 3 format

Table 3-26 lists how the bit values correspond with the Memory Model Feature Register 3
functions.

Table 3-26 Memory Model Feature Register 3 bit functions

Bits Field name Function

[31:8] - Reserved. RAZ.

[7:4] - Support for hierarchical cache maintenance by MVA, all architectures
0x0, no support in ARM1176JZF-S processors.

[3:0] - Support for hierarchical cache maintenance by Set/Way, all architectures.
0x0, no support in ARM1176JZF-S processors.

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 3-35
ID012310 Non-Confidential, Unrestricted Access

System Control Coprocessor

Table 3-27 lists the results of attempted access for each mode.

Table 3-27 Results of access to the Memory Model Feature Register 3

Secure Privileged Non-secure Privileged
User
Read Write Read Write

Data Undefined exception Data Undefined exception Undefined exception

To use the Memory Model Feature Register 3 read CP15 with:
. Opcode_1 set to 0

. CRn set to cO

. CRm setto cl

. Opcode_2 setto 7.

For example:

MRC pl5, @, <Rd>, c@, cl, 7 ;Read Memory Model Feature Register 3.

c0, Instruction Set Attributes Register 0

The purpose of the Instruction Set Attributes Register 0 is to provide information about the
instruction set that the processor supports beyond the basic set.

The Instruction Set Attributes Register O is:

. in CP15 ¢0
. a 32-bit read-only register common to the Secure and Non-secure worlds
. accessible in privileged modes only.

Figure 3-21 shows the bit arrangement for Instruction Set Attributes Register 0.

31 28 27 24 23 2019 16 15 121 8 7 4 3 0

Reserved - - - - - - -

Figure 3-21 Instruction Set Attributes Register 0 format

Table 3-28 lists how the bit values correspond with the Instruction Set Attributes Register 0

functions.
Table 3-28 Instruction Set Attributes Register 0 bit functions
Bits Field name Function
[31:28] - Reserved. RAZ.
[27:24] - Indicates support for divide instructions.
0x0, no support in ARM1176JZF-S processors.
[23:20] - Indicates support for debug instructions.
0x1, ARM1176JZF-S processors support BKPT.
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 3-36

ID012310 Non-Confidential, Unrestricted Access

System Control Coprocessor

Table 3-28 Instruction Set Attributes Register 0 bit functions (continued)

Bits Field name Function

[19:16] - Indicates support for coprocessor instructions.
0x4, ARM1176JZF-S processors support:
. CDP, LDC, MCR, MRC, STC
. CDP2, LDC2, MCR2, MRC2, STC2
. MCRR, MRRC
. MCRR2, MRRC2.

[15:12] - Indicates support for combined compare and branch instructions.
0x0, no support in ARM1176JZF-S processors.

[11:8] - Indicates support for bitfield instructions.
0x0, no support in ARM1176JZF-S processors.

[7:4] - Indicates support for bit counting instructions.
0x1, ARM1176JZF-S processors support CLZ.

[3:0] - Indicates support for atomic load and store instructions.
0x1, ARM1176JZF-S processors support SWP and SWPB.

Table 3-29 lists the results of attempted access for each mode.

Table 3-29 Results of access to the Instruction Set Attributes Register 0

Secure Privileged Non-secure Privileged
User
Read Write Read Write

Data Undefined exception = Data Undefined exception ~ Undefined exception

To use the Instruction Set Attributes Register O read CP15 with:
o Opcode_1 set to 0

. CRn set to cO

. CRm set to c2

o Opcode_2 set to 0.

For example:

MRC pl15, @, <Rd>, c@, c2, @ ;Read Instruction Set Attributes Register 0

c0, Instruction Set Attributes Register 1

The purpose of the Instruction Set Attributes Register 1 is to provide information about the
instruction set that the processor supports beyond the basic set.

The Instruction Set Attributes Register 1 is:

. in CP15 c0
. a 32-bit read-only register common to the Secure and Non-secure worlds
. accessible in privileged modes only.

Figure 3-22 on page 3-38 shows the bit arrangement for Instruction Set Attributes Register 1.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-37
Non-Confidential, Unrestricted Access

31

28 27 24

System Control Coprocessor

23 2019 16 15 121 8 7 4 3 0

Figure 3-22 Instruction Set Attributes Register 1 format

Table 3-30 lists how the bit values correspond with the Instruction Set Attributes Register 1

functions.
Table 3-30 Instruction Set Attributes Register 1 bit functions

Bits Field name Function
[31:28] - Indicates support for Java instructions.

0x1, ARM1176JZF-S processors support BXJ and J bit in PSRs.
[27:24] - Indicates support for interworking instructions.

0x2, ARM1176JZF-S processors support:

. BX, and T bit in PSRs

o BLX, and PC loads have BX behavior.
[23:20] - Indicates support for immediate instructions.

0x0, no support in ARM1176JZF-S processors.
[19:16] - Indicates support for if then instructions.

0x0, no support in ARM1176JZF-S processors.
[15:12] - Indicates support for sign or zero extend instructions.

0x2, ARM1176JZF-S processors support:

. SXTB, SXTB16, SXTH, UXTB, UXTB16, and UXTH

. SXTAB, SXTAB16, SXTAH, UXTAB, UXTAB16, and UXTAH.
[11:8] - Indicates support for exception 2 instructions.

0x1, ARM1176JZF-S processors support SRS, RFE, and CPS.
[7:4] - Indicates support for exception 1 instructions.

0x1, ARM1176JZF-S processors support LDM(2), LDM(3) and STM(2).
[3:0] - Indicates support for endianness control instructions.

0x1, ARM1176JZF-S processors support SETEND and E bit in PSRs.

Table 3-31 lists the results of attempted access for each mode.

Table 3-31 Results of access to the Instruction Set Attributes Register 1
Secure Privileged Non-secure Privileged
User
Read Write Read Write

Data Undefined exception = Data Undefined exception ~ Undefined exception

To use the Instruction Set Attributes Register 1 read CP15 with:
Opcode_1 set to 0
CRn set to cO
CRm set to c2
Opcode_2 set to 1.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-38
Non-Confidential, Unrestricted Access

System Control Coprocessor

For example:

MRC pl5, 0, <Rd>, c@, c2, 1 ;Read Instruction Set Attributes Register 1

c0, Instruction Set Attributes Register 2

The purpose of the Instruction Set Attributes Register 2 is to provide information about the
instruction set that the processor supports beyond the basic set.

The Instruction Set Attributes Register 2 is:

. in CP15 c0
. a 32-bit read-only register common to the Secure and Non-secure worlds
. accessible in privileged modes only.

Figure 3-23 shows the bit arrangement for Instruction Set Attributes Register 2.

31 28 27 24 23 2019 16 15 121 8 7 4 3 0

Figure 3-23 Instruction Set Attributes Register 2 format

Table 3-32 lists how the bit values correspond with the Instruction Set Attributes Register 2
functions.

Table 3-32 Instruction Set Attributes Register 2 bit functions

Field
name

Bits

Function

[31:28] -

[27:24] -

[23:20] -

Indicates support for reversal instructions.
0x1, ARM1176JZF-S processors support REV, REV16, and REVSH.

Indicates support for PSR instructions.

0x1, ARM1176JZF-S processors support MRS and MSR exception return instructions for
data-processing.

Indicates support for advanced unsigned multiply instructions.
0x2, ARM1176JZF-S processors support:

. UMULL and UMLAL

. UMAAL.

[19:16] -

[15:12] -

Indicates support for advanced signed multiply instructions.
0x3, ARM1176JZF-S processors support:
d SMULL and SMLAL

. SMLABB, SMLABT, SMLALBB,SMLALBT, SMLALTB, SMLALTT, SMLATB,
SMLATT, SMLAWB, SMLAWT, SMULBB, SMULBT, SMULTB, SMULTT, SMULWRB,
SMULWT, and Q flag in PSRs

. SMLAD, SMLADX, SMLALD, SMLALDX, SMLSD, SMLSDX, SMLSLD, SMLSLDX,
SMMLA, SMMLAR, SMMLS, SMMLSR, SMMUL, SMMULR, SMUAD, SMUADX,
SMUSD, and SMUSDX.

Indicates support for multiply instructions.
0x1, ARM1176JZF-S processors support MLA.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-39
Non-Confidential, Unrestricted Access

System Control Coprocessor

Table 3-32 Instruction Set Attributes Register 2 bit functions (continued)

Bits

Field
name

Function

[11:8]

Indicates support for multi-access interruptible instructions.
0x1, ARM1176JZF-S processors support restartable LDM and STM.

[7:4]

Indicates support for memory hint instructions.
0x2, ARM1176JZF-S processors support PLD.

[3:0]

Indicates support for load and store instructions.
0x1, ARM1176JZF-S processors support LDRD and STRD.

Table 3-33 lists the results of attempted access for each mode.

Table 3-33 Results of access to the Instruction Set Attributes Register 2

Secure Privileged Non-secure Privileged
User
Read Write Read Write

Data Undefined exception Data Undefined exception = Undefined exception

To use the Instruction Set Attributes Register 2 read CP15 with:
. Opcode_1 set to 0

. CRn set to c0

. CRm set to c2

. Opcode_2 set to 2.

For example:

MRC pl15, 0, <Rd>, c@, c2, 2 ;Read Instruction Set Attributes Register 2

c0, Instruction Set Attributes Register 3

The purpose of the Instruction Set Attributes Register 3 is to provide information about the
instruction set that the processor supports beyond the basic set.

The Instruction Set Attributes Register 3 is:

. in CP15 ¢0
. a 32-bit read-only registers common to the Secure and Non-secure worlds
. accessible in privileged modes only.

Figure 3-24 shows the bit arrangement for Instruction Set Attributes Register 3.

31 28 27 24 23 2019 16 15 1221 8 7 4 3 0

Figure 3-24 Instruction Set Attributes Register 3 format

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-40
Non-Confidential, Unrestricted Access

System Control Coprocessor

Table 3-34 lists how the bit values correspond with the Instruction Set Attributes Register 3

functions.
Table 3-34 Instruction Set Attributes Register 3 bit functions
Bits Field Function
name
[31:28] - Indicates support for Thumb-2 extensions.
0x0, no support in ARM1176JZF-S processors.
[27:24] - Indicates support for true NOP instructions.
0x1, ARM1176JZF-S processors support NOP and the capability for additional NOP compatible
hints. ARM1176JZF-S processors do not support NOP16.
[23:20] - Indicates support for Thumb copy instructions.
0x1, ARM1176JZF-S processors support Thumb MOV (3) low register = low register, and the CPY
alias for Thumb MOV(3).
[19:16] - Indicates support for table branch instructions.
0x0, no support in ARM1176JZF-S processors.
[15:12] - Indicates support for synchronization primitive instructions.
0x2, ARM1176JZF-S processors support:
. LDREX and STREX
. LDREXB, LDREXH, LDREXD, STREXB, STREXH, STREXD, and CLREX
[11:8] - Indicates support for SVC instructions.
0x1, ARM1176JZF-S processors support SVC.
[7:4] - Indicates support for Single Instruction Multiple Data (SIMD) instructions.
0x3, ARM1176JZF-S processors support:
PKHBT, PKHTB, QADD16, QADDS, QADDSUBX, QSUB16, QSUB8, QSUBADDX, SADDI16,
SADDS, SADDSUBX, SEL, SHADD16, SHADD8, SHADDSUBX, SHSUB16, SHSUBS,
SHSUBADDX, SSAT, SSAT16, SSUB16, SSUBS, SSUBADDX, SXTAB16, SXTB16, UADDI16,
UADDS, UADDSUBX, UHADD16, UHADDS, UHADDSUBX, UHSUB16, UHSUBS,
UHSUBADDX, UQADD16, UQADDS, UQADDSUBX, UQSUB16, UQSUBS, UQSUBADDX,
USADS8, USADAS, USAT, USAT16, USUB16, USUB8, USUBADDX, UXTAB16, UXTB16, and
the GE[3:0] bits in the PSRs.
[3:0] - Indicates support for saturate instructions.

0x1, ARM1176JZF-S processors support QADD, QDADD, QDSUB, QSUB and Q flag in PSRs.

Table 3-35 lists the results of attempted access for each mode.

Table 3-35 Results of access to the Instruction Set Attributes Register 3

Secure Privileged Non-secure Privileged
User
Read Write Read Write

Data Undefined exception Data Undefined exception Undefined exception

To use the Instruction Set Attributes Register 3 read CP15 with:

Opcode_1 set to 0
CRn set to c0
CRm set to c2
Opcode_2 set to 3.

ARM DDI 0301H

ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-41
Non-Confidential, Unrestricted Access

System Control Coprocessor

For example:

MRC pl5, @, <Rd>, c@, c2, 3 ;Read Instruction Set Attributes Register 3

c0, Instruction Set Attributes Register 4

The purpose of the Instruction Set Attributes Register 4 is to provide information about the
instruction set that the processor supports beyond the basic set.

The Instruction Set Attributes Register 4 is:

. in CP15 c0
. a 32-bit read-only register common to the Secure and Non-secure worlds
. accessible in privileged modes only.

Figure 3-25 shows the bit arrangement for Instruction Set Attributes Register 4.

31 28 27 24 23 2019 16 15 121 8 7 4 3 0

Reserved | Reserved - - - - - -

Figure 3-25 Instruction Set Attributes Register 4 format

Table 3-36 lists how the bit values correspond with the Instruction Set Attributes Register 4
functions.

Table 3-36 Instruction Set Attributes Register 4 bit functions

Bits

Field name Function

[31:28] - Reserved. RAZ.

[27:24] - Reserved. RAZ.

[23:20] - Indicates fractional support for synchronization primitive instructions.

0x0, ARM1176JZF-S processors support all synchronization primitive instructions.
See Table 3-34 on page 3-41.

[19:16] - Indicates support for barrier instructions.

0x0, None. ARM1176JZF-S processors support only the CP15 barrier operations.

[15:12] - Indicates support for SMC instructions.

0x1, ARM1176JZF-S processors support SMC.

[11:8]

- Indicates support for writeback instructions.
0x1, ARM1176JZF-S processors support all defined writeback addressing modes.

[7:4]

- Indicates support for with shift instructions.
0x4, ARM1176JZF-S processors support:
. shifts of loads and stores over the range LSL 0-3
. constant shift options
. register controlled shift options.

[3:0]

- Indicates support for Unprivileged instructions.
0x1, ARM1176JZF-S processors support LDRBT, LDRT, STRBT, and STRT.

ARM DDI 0301H

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-42
Non-Confidential, Unrestricted Access

System Control Coprocessor

Table 3-37 lists the results of attempted access for each mode.

Table 3-37 Results of access to the Instruction Set Attributes Register 4

Secure Privileged Non-secure Privileged
User
Read Write Read Write

Data Undefined exception Data Undefined exception = Undefined exception

To use the Instruction Set Attributes Register 4 read CP15 with:
. Opcode_1 set to 0

. CRn set to cO

. CRm set to c2

. Opcode_2 set to 4.

For example:

MRC pl5, @, <Rd>, c@, c2, 4 ;Read Instruction Set Attributes Register 4

c0, Instruction Set Attributes Register 5

The purpose of the Instruction Set Attributes Register 5 is to provide additional information
about the properties of the processor.

The Instruction Set Attributes Register 5 is:

. in CP15 c0
. a 32-bit read-only registers common to the Secure and Non-secure worlds
. accessible in privileged modes only.

The contents of the Instruction Set Attributes Register 5 are implementation defined. In the
ARMI1176JZF-S processor, Instruction Set Attributes Register 5 is read as 0x00000000.

Table 3-38 lists the results of attempted access for each mode.

Table 3-38 Results of access to the Instruction Set Attributes Register 5

Secure Privileged Non-secure Privileged
User
Read Write Read Write

Data Undefined exception Data Undefined exception = Undefined exception

To use the Instruction Set Attributes Register 5 read CP15 with:
. Opcode_1 set to 0

. CRn set to c0

. CRm set toc2

. Opcode_2 set to 5.

For example:

MRC p15, 0, <Rd>, c@, c2, 5 ;Read Instruction Set Attribute Register 5.

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 3-43
ID012310 Non-Confidential, Unrestricted Access

3.2.7 c1, Control Register

System Control Coprocessor

This section contains information on:

Purpose of the Control Register

Structure of the Control Register

Operation of the Control Register on page 3-45
Use of the Control Register on page 3-47
Behavior of the Control Register on page 3-48.

Purpose of the Control Register

The purpose of the Control Register is to provide control and configuration of:

memory alignment, endianness, protection, and fault behavior
MMU and cache enables and cache replacement strategy
interrupts and the behavior of interrupt latency

the location for exception vectors

program flow prediction.

Table 3-39 on page 3-45 lists the purposes of the individual bits in the Control Register.

Structure of the Control Register

The Control Register is:

in CP15 cl

a 32 bit register, Table 3-39 on page 3-45 lists read and write access to individual bits for
the Secure and Non-secure worlds

accessible in privileged modes only

partially banked, Table 3-39 on page 3-45 lists banked and Secure modify only bits.

Figure 3-26 shows the arrangement of bits in the register.

3130292827 2625242322212019181716151413121110 9 8 7 6 43210

SBzZ SBz U|FI| SBZ [IT|B L4 |V[I]|Z|F|R[S|B| SBO |W[C|A[M

FIT E[V([X SD R

A[R E[E[P ZT R

Figure 3-26 Control Register format

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-44
Non-Confidential, Unrestricted Access

System Control Coprocessor

Operation of the Control Register

Table 3-39 lists how the bit values correspond with the Control Register functions.

Table 3-39 Control Register bit functions

Bits

Field
name

Access

Function

[31:30]

This field is UNP when read. Write as the existing value.

[29]

FA

Banked

This bit controls the Force AP functionality in the MMU that generates Access Bit
faults, see Access permissions on page 6-11

0 = Force AP is disabled, reset value.
1 = Force AP is enabled.

(28]

TR

Banked

This bit controls the TEX remap functionality in the MMU, see Memory region
attributes on page 6-14.

0 = TEX remap disabled. Normal ARMv6 behavior, reset value
1 = TEX remap enabled. TEX[2:1] become page table bits for OS.

[27:26]
[25]

EE bit

Banked

This field is UNP when read. Write as the existing value.

Determines how the E bit in the CPSR bit is set on an exception. The reset value
depends on external signals.

0 = CPSR E bit is set to 0 on an exception, reset value.

1 = CPSR E bit is set to 1 on an exception.

[24]

(23]

VE bit

XP bit

Banked

Banked

Enables the VIC interface to determine interrupt vectors.
See the description of the V bit, bit [13].

0 = Interrupt vectors are fixed, reset value.

1 = Interrupt vectors are defined by the VIC interface.

Enables the extended page tables to be configured for the hardware page translation
mechanism.

0 = Subpage AP bits enabled, reset value.
1 = Subpage AP bits disabled.

(22]

U bit

Banked

Enables unaligned data access operations, including support for mixed little-endian and
big-endian operation. The A bit has priority over the U bit. The reset value of the U bit
depends on external signals.

0= Unaligned data access support disabled, reset value. The processor treats unaligned
loads as rotated aligned data accesses.

1 = Unaligned data access support enabled. The processor permits unaligned loads and
stores and support for mixed endian data is enabled.

(21]

FI bit

Secure
modify
only

Configures low latency features for fast interrupts. This bit is overridden by the FIO bit,
see cl, Auxiliary Control Register on page 3-48.

0 = All performance features enabled, reset value.

1 = Low interrupt latency configuration enabled. See Low interrupt latency
configuration on page 2-40.

[20:19]

UNP/SBZ

(18]

(17]

Deprecated. Global enable for instruction TCM.
Function redundant in ARMv6.
SBO

UNP/SBZ

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-45

Non-Confidential, Unrestricted Access

System Control Coprocessor

Table 3-39 Control Register bit functions (continued)

Bits

Field
name

Access

Function

[16]

DT bit

Deprecated. Global enable for data TCM.
Function redundant in ARMv6.
SBO

[15]

L4 bit

Secure
modify
only

Determines if the T bit is set for PC load instructions. For more details see the ARM
Architecture Reference Manual.

0 = Loads to PC set the T bit, reset value.
1 = Loads to PC do not set the T bit, ARMv4 behavior.

[14]

RR bit

Secure
modify
only

Determines the replacement strategy for the cache.
0 = Normal replacement strategy by random replacement, reset value.

1 = Predictable replacement strategy by round-robin replacement.

[13]

V bit

Banked

Determines the location of exception vectors, see cl2, Secure or Non-secure Vector
Base Address Register on page 3-121 and c12, Monitor Vector Base Address Register
on page 3-122. The reset value of the V bit depends on an external signal.

0 = Normal exception vectors selected, the Vector Base Address Registers determine
the address range, reset value.

1 = High exception vectors selected, address range = 0xFFFF0000-0xFFFFoQ1C.

[12]

I bit

Banked

Enables level one instruction cache.
0 = Instruction Cache disabled, reset value.
1 = Instruction Cache enabled.

(11]

Z bit

Banked

Enables branch prediction.
0 = Program flow prediction disabled, reset value.

1 = Program flow prediction enabled.

(10]

F bit

Should Be Zero

(9]

R bit

Banked

Deprecated. Enables ROM protection. If you modify the R bit this does not affect the
access permissions of entries already in the TLB. See MMU software-accessible
registers on page 6-53.

0 = ROM protection disabled, reset value.

1 = ROM protection enabled.

(8]

(7]

S bit

B bit

Banked

Secure
modify
only

Deprecated. Enables MMU protection. If you modify the S bit this does not affect the
access permissions of entries already in TLB.

0 = MMU protection disabled, reset value.
1 = MMU protection enabled.

Determines operation as little-endian or big-endian word invariant memory system and
the names of the low four-byte addresses within a 32-bit word. The reset value of the B
bit depends on the BIGENDINIT external signal.

0 = Little-endian memory system, reset value.

1 = Big-endian word-invariant memory system.

[6:4]

This field returns 1 when read.
Should Be One.

(3]

W bit

Not implemented in the processor.
Read As One
Write Ignore.

ARM DDI 0301H

ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-46

Non-Confidential, Unrestricted Access

System Control Coprocessor

Table 3-39 Control Register bit functions (continued)

Bits Field Access Function
name
[2] C bit Banked Enables level one data cache.
0 = Data cache disabled, reset value.
1 = Data cache enabled.
[1] A bit Banked Enables strict alignment of data to detect alignment faults in data accesses. The A bit

setting takes priority over the U bit.
0 = Strict alignment fault checking disabled, reset value.
1 = Strict alignment fault checking enabled.

(0]

M bit Banked Enables the MMU.

0 = MMU disabled, reset value.
1 = MMU enabled.

Attempts to read or write the Control Register from Secure or Non-secure User modes results
in an Undefined exception.

Attempts to write to this register in Secure Privileged mode when CP15SDISABLE is HIGH
result in an Undefined exception, see TrustZone write access disable on page 2-9.

Attempts to write Secure modify only bit in Non-secure privileged modes are ignored.

Attempts to read Secure modify only bits return the Secure bit value. Table 3-40 lists the actions
that result from attempted access for each mode.

Table 3-40 Results of access to the Control Register

Non-secure Privileged

Access type Secure Privileged User

Read Write
Secure modify only Secure bit Secure bit Ignored Undefined exception
Banked Secure bit Non-secure bit Non-secure bit ~ Undefined exception

Use of the Control Register

To use the Control Register it is recommended that you use a read modify write technique. To
use the Control Register read or write CP15 with:

o Opcode_1 set to 0
. CRnsettocl

. CRm set to cO

o Opcode_2 set to 0.

For example:

MRC p15, @, <Rd>, c1, c0, 0 ; Read Control Register configuration data
MCR p15, 0, <Rd>, cl1, c0, 0 ; Write Control Register configuration data

Normally, to set the V bit and the B, EE, and U bits you configure signals at reset.

The V bit depends on VINITHI at reset:
. VINITHI LOW sets V to 0
. VINITHI HIGH sets V to 1.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-47
Non-Confidential, Unrestricted Access

System Control Coprocessor

The B, EE, and U bits depend on how you set BIGENDINIT and UBITINIT at reset.
Table 3-41 lists the values of the B, EE, and U bits that result for the reset values of these signals.
See Reset values of the U, B, and EE bits on page 4-19.

Table 3-41 Resultant B bit, U bit, and EE bit values

UBITINIT BIGENDINIT EE U B

0 0 0 0 o0
0 1 0 0 1
1 0 0 1 0

Behavior of the Control Register

These bits in the Control Register exhibit specific behavior:

A bit

DT bit

IT bit

R bit

S bit

W bit

The A bit setting takes priority over the U bit. The Data Abort trap is taken if strict
alignment is enabled and the data access is not aligned to the width of the
accessed data item.

This bit is used in ARM946 and ARM966 processors to enable the Data TCM.

In ARMv6, the TCM blocks have individual enables that apply to each block. As
a result, this bit is now redundant and Should Be One. See ¢9, Data TCM Region
Register on page 3-89 for a description of the ARM1176JZF-S TCM enables.

This bit is used in ARM946 and ARM966 processors to enable the Instruction
TCM.

In ARMv6, the TCM blocks have individual enables that apply to each block. As
a result, this bit is now redundant and Should Be One. See ¢9, Instruction TCM
Region Register on page 3-91 for a description of the ARM1176JZF-S TCM
enables.

Modifying the R bit does not affect the access permissions of entries already in
the TLB. See MMU software-accessible registers on page 6-53.

Modifying the S bit does not affect the access permissions of entries already in
the TLB. See MMU software-accessible registers on page 6-53.

The ARM1176JZF-S processor does not implement the write buffer enable
because all memory writes take place through the Write Buffer.

3.28 c1, Auxiliary Control Register

The purpose of the Auxiliary Control Register is to control:

. program flow
. low interrupt latency
. cache cleaning

. MicroTLB cache strategy

. cache size restriction.

For more information on how the system control coprocessor operates with caches, see Cache
control and configuration on page 3-7.

Table 3-42 lists the purposes of the individual bits in the Auxiliary Control Register.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-48

Non-Confidential, Unrestricted Access

System Control Coprocessor

The Auxiliary Control Register is:

in CP15 cl

a 32-bit:

— read/write register in the Secure world

— read only register in the Non-secure world
accessible in privileged modes only.

Figure 3-27 shows the arrangement of bits in the register.

3130 29 28 27 76543210
F[F[B[P
I[s|F|H SBZ/UNP 252;232
o[p|p|p

Figure 3-27 Auxiliary Control Register format

Table 3-42 lists how the bit values correspond with the Auxiliary Control Register functions.

Table 3-42 Auxiliary Control Register bit functions

Bits Field Function

name

[31] FIO Provides additional level of control for low interrupt latency configuration. This bit overrides the FI
bit, see FI bit in ¢/, Control Register on page 3-44:

0 = Normal operation for low interrupt latency configuration, reset value

1 = Low interrupt latency configuration overridden. This feature:

. disables the fast interrupt response introduced by setting the FI bit

. disables Hit-Under-Miss (HUM) functionality

. abandons restartable external accesses so that all external aborts to loads are precise.

[30] FSD Provides additional level of control for speculative operations, see cl, Control Register on page 3-44.
Force speculative operations force the PC to a new value because of static, speculative, branch
prediction:

0 = Enable force speculative operations, reset value
1 = Disable force speculative operations.

[29] BFD Disables branch folding. This behavior also depends on the SB and DB bits, [2:1] in this register, and
the Z bit, see c1, Control Register on page 3-44:

0 = Branch folding is enabled, when branch prediction is enabled, reset value
1 = Branch folding is disabled.

[28] PHD Disables instruction prefetch halting on unconditional, unpredictable instructions that later result in a
prefetch buffer flush. This prefetch halting is a power saving technique:
0 = Prefetch halting is enabled, reset value
1 = Prefetch halting is disabled.

[27:71 - UNP/SBZ

[6] (674 Controls the restriction of cache size to 16KB. This enables the processor to run software that does not
support ARMv6 page coloring. When set the CZ bit does not effect the Cache Type Register. See
Restrictions on page table mappings page coloring on page 6-41 for more information:

0 = Normal ARMv6 cache behavior, reset value
1 = Cache size limited to 16KB.
[5] RV Disables block transfer cache operations:

0 = Block transfer cache operations enabled, reset value
1 = Block transfer cache operations disabled.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-49
Non-Confidential, Unrestricted Access

System Control Coprocessor

Table 3-42 Auxiliary Control Register bit functions (continued)

Bits Field Function
name

[4] RA Disables clean entire data cache:

0 = Clean entire data cache enabled, reset value
1 = Clean entire data cache disabled.

[3] TR Enables MicroTLB random replacement strategy. This depends on the cache replacement strategy that
the RR bit controls, see cI, Control Register on page 3-44. The MicroTLB strategy is only random
when the cache strategy is random:

0 = MicroTLB replacement is Round Robin, reset value
1 = MicroTLB replacement is Random if cache replacement is also Random.

[2] SB Enables static branch prediction. This depends on program flow prediction that the Z bit enables, see

cl, Control Register on page 3-44:
0 = Static branch prediction disabled
1 = Static branch prediction enabled, if the Z bit is set. The reset value is 1.
[1] DB Enables dynamic branch prediction. This depends on program flow prediction that the Z bit enables,
see cl, Control Register on page 3-44:
0 = Dynamic branch prediction disabled
1 = Dynamic branch prediction enabled, if the Z bit is set. The reset value is 1.
[0] RS Enables the return stack. This depends on program flow prediction that the Z bit enables, see ¢/,

Control Register on page 3-44:
0 = Return stack is disabled
1 = Return stack is enabled, if the Z bit is set. The reset value is 1.

Table 3-43 lists the results of attempted access for each mode.

Table 3-43 Results of access to the Auxiliary Control Register

Secure Privileged Non-secure Privileged
User
Read Write Read Write

Data Data Data Undefined exception = Undefined exception

To use the Auxiliary Control Register you must use a read modify write technique. To access
the Auxiliary Control Register read or write CP15 with:

Opcode_1 set to 0
CRnsettocl
CRm set to cO
Opcode_2 set to 1.

For example:

MRC pl5, 0, <Rd>, cl, c0, 1 ; Read Auxiliary Control Register
MCR p15, @, <Rd>, cl1, c0, 1 ; Write Auxiliary Control Register
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 3-50

ID012310

Non-Confidential, Unrestricted Access

System Control Coprocessor

3.29 c1, Coprocessor Access Control Register

The purpose of the Coprocessor Access Control Register is to set access rights for the
coprocessors CP0O through CP13. This register has no effect on access to CP14, the debug
control coprocessor, or CP15, the system control coprocessor. This register also provides a
means for software to determine if any particular coprocessor, CPO-CP13, exists in the system.

The Coprocessor Access Control Register is:

. in CP15 cl
. a 32-bit read/write register common to Secure and Non-secure worlds
. accessible in privileged modes only.

Figure 3-28 shows the arrangement of bits in the register.

31 2827262524 23222120191817161514131211109 8 7 6 5 4 3 2 1 O

SBZ/UNP |cp13|cp12|cp11 |[cp10| cp9 | cp8 | cp7 | cpb | cp5 | cp4 | cp3 | cp2 | cp1 | cpO

Figure 3-28 Coprocessor Access Control Register format

Table 3-44 lists how the bit values correspond with the Coprocessor Access Control Register
functions.

Table 3-44 Coprocessor Access Control Register bit functions

Bits Field name Function
[31:28] - UNP/SBZ.
- cp<n>?2 Defines access permissions for each coprocessor.

Access denied is the reset condition.

Access denied is the behavior for non-existent coprocessors:

b00 = Access denied, reset value. Attempted access generates an Undefined exception
b01 = Privileged mode access only

b10 = Reserved.

bl1 = Privileged and User mode access.

a. nis the coprocessor number between 0 and 13.

Access to coprocessors in the Non-secure world depends on the permissions set in the c/,
Non-Secure Access Control Register on page 3-55.

Attempts to read or write the Coprocessor Access Control Register access bits depend on the
corresponding bit for each coprocessor in ¢/, Non-Secure Access Control Register on page 3-55.
Table 3-45 lists the results of attempted access to coprocessor access bits for each mode.

Table 3-45 Results of access to the Coprocessor Access Control Register

Corresponding bit in Non-Secure

Secure Privileged Non-secure Privileged

. User
Access Control Register . .
9 Read Write Read Write

0 Data Data b00 Ignored Undefined exception
1 Data Data Data Data Undefined exception

To use the Coprocessor Access Control Register read or write CP15 with:

. Opcode_1 set to 0

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 3-51

ID012310

Non-Confidential, Unrestricted Access

System Control Coprocessor

. CRnsettocl
o CRm set to cO
. Opcode_2 set to 2.

For example:

MRC pl5, @, <Rd>, cl, c0, 2 ; Read Coprocessor Access Control Register
MCR p15, 0, <Rd>, cl1, c0, 2 ; Write Coprocessor Access Control Register

You must perform an Instruction Memory Barrier IMB) sequence immediately after an update
of the Coprocessor Access Control Register, see Memory Barriers on page 5-8. You must not
attempt to execute any instructions that are affected by the change of access rights between the
IMB sequence and the register update.

To determine if any particular coprocessor exists in the system write the access bits for the
coprocessor of interest with a value other than b00. If the coprocessor does not exist in the
system the access rights remain set to b00.

3.210 c1, Secure Configuration Register

The purpose of the Secure Configuration Register is to define:

. the current world as Secure or Non-secure

. the world in which the core executes exceptions

. the ability to modify the A and I bits in the CPSR in the Non-secure world.

The Secure Configuration Register is:

. in CP15 cl
. a 32 bit read/write register
. accessible in Secure privileged modes only.

Figure 3-29 shows the arrangement of bits in the register.

31 7

N

IR

SBZ Q

>m |w
o —mN
mnZ|o

4
F
W

2> |o

—Am>s|o

Figure 3-29 Secure Configuration Register format

Table 3-46 lists how the bit values correspond with the Secure Configuration Register functions.

Table 3-46 Secure Configuration Register bit functions

Bits Field name Function

[31:7] - UNP/SBZ.

[6] nET The Early Termination bit is not implemented in ARM1176JZF-S processors.
UNP/SBZ.

[5] AW Determines if the A bit in the CPSR can be modified when in the Non-secure world:
0 = Disable modification of the A bit in the CPSR in the Non-secure world, reset value
1 = Enable modification of the A bit in the CPSR in the Non-secure world.

[4] FwW Determines if the F bit in the CPSR can be modified when in the Non-secure world:

0 = Disable modification of the F bit in the CPSR in the Non-secure world, reset value
1 = Enable modification of the F bit in the CPSR in the Non-secure world.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-52
Non-Confidential, Unrestricted Access

System Control Coprocessor

Table 3-46 Secure Configuration Register bit functions (continued)

Bits Field name Function
[3] EA Determines External Abort behavior for Secure and Non-secure worlds:
0 = Branch to abort mode on an External Abort exception, reset value
1 = Branch to Secure Monitor mode on an External Abort exception.
[2] FIQ Determines FIQ behavior for Secure and Non-secure worlds:
0 = Branch to FIQ mode on an FIQ exception, reset value
1 = Branch to Secure Monitor mode on an FIQ exception.
[1] 1IRQ Determines IRQ behavior for Secure and Non-secure worlds:
0 = Branch to IRQ mode on an IRQ exception, reset value
1 = Branch to Secure Monitor mode on an IRQ exception.
[0] NS bit Defines the world for the processor:
0 = Secure, reset value
1 = Non-secure.
Note
When the core runs in Secure Monitor mode the state is considered Secure regardless of the state
of the NS bit. However, Monitor mode code can access nonsecure banked copies of registers if
the NS bit is set to 1. See the ARM Architecture Reference Manual for information on the effect
of the Security Extensions on the CP15 registers.
The permutations of the bits in the Secure Configuration Register have certain security
implications. Table 3-47 lists the results for combinations of the FW and FIQ bits.
Table 3-47 Operation of the FW and FIQ bits
FW FIQ Function
1 FIQs handled locally.
0 FIQs can be configured to give deterministic Secure interrupts.
1 Non-secure world able to make denial of service attack, avoid use of this function.
0 Avoid because the core might enter an infinite loop for Non-secure FIQ.
Table 3-48 lists the results for combinations of the AW and EA bits.
Table 3-48 Operation of the AW and EA bits
AW EA Function
1 0 Aborts handled locally.
0 1 All external aborts trapped to Secure Monitor.
1 1 All external imprecise data aborts trapped to Secure Monitor but the Non-secure world can hide Secure
aborts from the Secure Monitor, avoid use of this function.
0 0 Avoid because the core can unexpectedly enter an abort mode in the Non-secure world.

For more details on the use of Secure Monitor mode, see The NS bit and Secure Monitor mode

on page 2-4.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-53

Non-Confidential, Unrestricted Access

System Control Coprocessor

To use the Secure Configuration Register read or write CP15 with:
o Opcode_1 set to 0

. CRn settocl

. CRm set to cl

o Opcode_2 set to 0.

For example:

MRC p15, @, <Rd>, c1, c1, 0 ; Read Secure Configuration Register data
MCR p15, 0, <Rd>, c1, c1, 0 ; Write Secure Configuration Register data

An attempt to access the Secure Configuration Register from any state other than Secure
privileged results in an Undefined exception.

3.211 c1, Secure Debug Enable Register

The purpose of the Secure Debug Enable Register is to provide control of permissions for debug
in Secure User mode, see Chapter 13 Debug.

Table 3-49 lists the purposes of the individual bits in the Secure Debug Enable Register.

The Secure Debug Enable Register is:

. in CP15 cl
. a 32 bit register in the Secure world only
. accessible in Secure privileged modes only.

Figure 3-30 shows the arrangement of bits in the register.

31 210

SBzZ

SUNIDEN—]
SUIDEN
Figure 3-30 Secure Debug Enable Register format

Table 3-49 lists how the bit values correspond with the Secure Debug Enable Register functions.

Table 3-49 Secure Debug Enable Register bit functions

Bits Field name Function

[31:2] - This field is UNP when read. Write as the existing value.

[1] SUNIDEN Enables Secure User non-invasive debug:
0 = Non-invasive debug is not permitted in Secure User mode, reset value
1 = Non-invasive debug is permitted in Secure User mode.

[0] SUIDEN Enables Secure User invasive debug:
0 = Invasive debug is not permitted in Secure User mode, reset value

1 = Invasive debug is permitted in Secure User mode.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-54
Non-Confidential, Unrestricted Access

System Control Coprocessor

Table 3-50 lists the results of attempted access for each mode.

Table 3-50 Results of access to the Coprocessor Access Control Register

Secure Privileged
Non-secure Privileged User
Read Write

Data Data Undefined exception Undefined exception

To use the Secure Debug Enable Register read or write CP15 with:
. Opcode_1 set to 0

. CRnsettocl

. CRm setto cl

. Opcode_2 set to 1.

For example:

MRC pl5, 0, <Rd>, cl1, c1, 1 ; Read Secure Debug Enable Register
MCR p15, @, <Rd>, c1, c1, 1 ; Write Secure Debug Enable Register

3.212 c1, Non-Secure Access Control Register

The purpose of the Non-Secure Access Control Register is to define the Non-secure access
permission for:

. COprocessors

. cache lockdown registers
. TLB lockdown registers
. internal DMA.

Note

This register has no effect on Non-secure access permissions for the debug control coprocessor,
CP14, or the system control coprocessor, CP15.

The Non-Secure Access Control Register is:
. in CP15 cl
. a 32 bit register:
— read/write in the Secure world
— read only in the Non-secure world
. only accessible in privileged modes.

Figure 3-31 on page 3-56 shows the arrangement of bits in the register.

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 3-55
ID012310 Non-Confidential, Unrestricted Access

System Control Coprocessor

31 191817161514 131211109 8 7 6 5 4 3 2 1 0
D
SBZ M|TL SBZ
A

Figure 3-31 Non-Secure Access Control Register format

Table 3-51 lists how the bit values correspond with the Non-Secure Access Control Register
functions.

Table 3-51 Non-Secure Access Control Register bit functions

Bits Field Function
name

Reserved.
UNP/SBZ.

[31:19]

[18] DMA Reserves the DMA channels and registers for the Secure world and determines the page tables, Secure
or Non-secure, to use for DMA transfers. For details, see DMA on page 7-10:
0 = DMA reserved for the Secure world only and the Secure page tables are used for DMA transfers,
reset value
1 = DMA can be used by the Non-secure world and the Non-secure page tables are used for DMA
transfers.

[17] TL Prevents operations in the Non-secure world from locking page tables in TLB lockdown entries.

The Invalidate Single Entry or Invalidate ASID match operations can match a TLB lockdown entry
but an Invalidate All operation only applies to unlocked entries:

0 = Reserve TLB Lockdown registers for Secure operation only, reset value

1 = TLB Lockdown registers available for Secure and Non-secure operation.

[16] CL Prevents operations in the Non-secure world from changing cache lockdown entries:
0 = Reserve cache lockdown registers for Secure operation only, reset value
1 = Cache lockdown registers available for Secure and Non-secure operation.

[15:14] Reserved.

UNP/SBZ.

[13:0] CPn? Determines permission to access the given coprocessor in the Non-secure world:
0 = Secure access only, reset value
1 = Secure or Non-secure access.

a. nis the coprocessor number from O to 13.

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 3-56
ID012310 Non-Confidential, Unrestricted Access

System Control Coprocessor

To use the Non-Secure Access Control Register read or write CP15 with:
o Opcode_1 set to 0

. CRn settocl

. CRm set to cl

o Opcode_2 set to 2.

For example:

MRC p15, 0, <Rd>, c1, c1, 2 ; Read Non-Secure Access Control Register data
MCR p15, 0, <Rd>, c1, c1, 2 ; Write Non-Secure Access Control Register data

Table 3-52 lists the results of attempted access for each mode.

Table 3-52 Results of access to the Auxiliary Control Register

Secure Privileged Non-secure Privileged
User
Read Write Read Write

Data Data Data Undefined exception ~ Undefined exception

3.2.13 c2, Translation Table Base Register 0

The purpose of the Translation Table Base Register O is to hold the physical address of the
first-level translation table.

You use Translation Table Base Register O for process-specific addresses, where each process
maintains a separate first-level page table. On a context switch you must modify both
Translation Table Base Register 0 and the Translation Table Base Control Register, if
appropriate.

Table 3-53 on page 3-58 lists the purposes of the individual bits in the Translation Table Base
Register 0.

The Translation Table Base Register O is:

. in CP15 c2

. a 32 bit read/write register banked for Secure and Non-secure worlds
. accessible in privileged modes only.

Figure 3-32 shows the bit arrangement for the Translation Table Base Register 0.

31 14-N 13-N 543210

Translation table base 0 UNP/SBZ RGN|P|S|C

Figure 3-32 Translation Table Base Register 0 format

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-57
Non-Confidential, Unrestricted Access

System Control Coprocessor

Table 3-53 lists how the bit values correspond with the Translation Table Base Register O

functions.

Table 3-53 Translation Table Base Register 0 bit functions

Bits

Field name

Function

[31:14-N]a

Translation table base 0

Holds the translation table base address, the physical address of the first level
translation table. The reset value is 0.

[13-N:5]2

[4:3]

[2]

RGN

UNP/SBZ.

Indicates the Outer cacheable attributes for page table walking:
b00 = Outer Noncacheable, reset value

b01 = Write-back, Write Allocate

b10 = Write-through, No Allocate on Write

bl1 = Write-back, No Allocate on Write.

If the processor supports ECC, it indicates to the memory controller it is enabled
or disabled. For ARM1176JZF-S processors this is O:

0 = Error-Correcting Code (ECC) is disabled, reset value
1 = ECC is enabled.

(1]

Indicates the page table walk is to Non-Shared or to Shared memory:
0 = Non-Shared, reset value
1 = Shared.

(0]

Indicates the page table walk is Inner Cacheable or Inner Noncacheable:
0 = Inner noncacheable, reset value

1 = Inner cacheable.

a. For an explanation of N see c2, Translation Table Base Control Register on page 3-60.

Attempts to write to this register in Secure Privileged mode when CP15SDISABLE is HIGH
result in an Undefined exception, see TrustZone write access disable on page 2-9.

Table 3-54 lists the results of attempted access for each mode.

Table 3-54 Results of access to the Translation Table Base Register 0

Secure Privileged Non-secure Privileged

Read

User
Write Read Write

Secure data Secure data Non-secure data Non-secure data ~ Undefined exception

A write to the Translation Table Base Register O updates the address of the first level translation
table from the value in bits [31:7] of the written value, to account for the maximum value of 7
for N. The number of bits of this address that the processor uses, and therefore, the required
alignment of the first level translation table, depends on the value of N, see c2, Translation Table
Base Control Register on page 3-60.

A read from the Translation Table Base Register O returns the complete address of the first level
translation table in bits [31:7] of the read value, regardless of the value of N.

To use the Translation Table Base Register 0 read or write CP15 c2 with:
o Opcode_1 set to 0

. CRn set to c2
J CRm set to cO

ARM DDI 0301H

ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-58
Non-Confidential, Unrestricted Access

System Control Coprocessor

. Opcode_2 set to 0.

For example:

MRC p15, 0, <Rd>, c2, c0, 0 ; Read Translation Table Base Register 0
MCR pl5, 0, <Rd>, c2, c0, 0 ; Write Translation Table Base Register 0
Note

The ARM1176JZF-S processor cannot page table walk from level one cache. Therefore, if C is
set to 1, to ensure coherency, you must either store page tables in Inner write-through memory
or, if in Inner write-back, you must clean the appropriate cache entries after modification so that
the mechanism for the hardware page table walks sees them.

3.2.14 c2, Translation Table Base Register 1

The purpose of the Translation Table Base Register 1 is to hold the physical address of the
first-level table. The expected use of the Translation Table Base Register 1 is for OS and I/O
addresses.

Table 3-55 lists the purposes of the individual bits in the Translation Table Base Register 1.

The Translation Table Base Register 1 is:

. in CP15 ¢2

. a 32 bit read/write register banked for Secure and Non-secure worlds
. accessible in privileged modes only.

Figure 3-33 shows the bit arrangement for the Translation Table Base Register 1.

31 1413 543210

Translation table base 1 UNP/SBZ RGN|P|S|C

Figure 3-33 Translation Table Base Register 1 format

Table 3-55 lists how the bit values correspond with the Translation Table Base Register 1
functions.

Table 3-55 Translation Table Base Register 1 bit functions

Bits

Field name Function

[31:14]

Translation table base 1 ~ Holds the translation table base address, the physical address of the first level

translation table. The reset value is 0.

[13:5]

UNP/SBZ.

[4:3]

RGN

Indicates the Outer cacheable attributes for page table walking:
b00 = Outer Noncacheable, reset value

b01 = Write-back, Write Allocate

b10 = Write-through, No Allocate on Write

bl1 = Write-back, No Allocate on Write.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-59
Non-Confidential, Unrestricted Access

System Control Coprocessor

Table 3-55 Translation Table Base Register 1 bit functions (continued)

Bits

Field name Function

(2]

P

If the processor supports ECC, it indicates to the memory controller it is enabled or
disabled. For ARM1176JZF-S processors this is 0:

0 = Error-Correcting Code (ECC) is disabled, reset value
1 = ECC is enabled.

(1]

(0]

Indicates the page table walk is to Non-Shared or to Shared memory:
0 = Non-Shared, reset value
1 = Shared.

Indicates the page table walk is Inner Cacheable or Inner Non Cacheable:
0 = Inner Noncacheable, reset value
1 = Inner Cacheable.

Table 3-56 lists the results of attempted access for each mode.

Table 3-56 Results of access to the Translation Table Base Register 1

Secure Privileged Non-secure Privileged
User
Read Write Read Write

Secure data Secure data Non-secure data Non-secure data Undefined exception

A write to the Translation Table Base Register 1 updates the address of the first level translation
table from the value in bits [31:14] of the written value. Bits [13:5] Should Be Zero. The
Translation Table Base Register 1 must reside on a 16KB page boundary.

To use the Translation Table Base Register 1 read or write CP15 with:
. Opcode_1 set to 0

. CRn set to c2

. CRm set to cO

. Opcode_2 set to 1.

For example:

MRC pl5, 0, <Rd>, c2, c0, 1 ; Read Translation Table Base Register 1
MCR p15, @, <Rd>, c2, c0, 1 ; Write Translation Table Base Register 1
Note

The ARM1176JZF-S processor cannot page table walk from level one cache. Therefore, if C is
set to 1, to ensure coherency, you must either store page tables in Inner write-through memory
or, if in Inner write-back, you must clean the appropriate cache entries after modification so that
the mechanism for the hardware page table walks sees them.

3.2.15 c2, Translation Table Base Control Register

The purpose of the Translation Table Base Control Register is to determine if a page table miss
for a specific VA uses, for its page table walk, either:

. Translation Table Base Register 0. The recommended use is for task-specific addresses
. Translation Table Base Register 1. The recommended use is for operating system and I/O
addresses.
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 3-60

ID012310

Non-Confidential, Unrestricted Access

System Control Coprocessor

Table 3-57 lists the purposes of the individual bits in the Translation Table Base Control
Register.

The Translation Table Base Control Register is:

. in CP15 c2

. a 32 bit read/write register banked for Secure and Non-secure worlds
. accessible in privileged modes only.

Figure 3-34 shows the bit arrangement for the Translation Table Base Register 1.

31 6

UNP/SBZ

-~ 0O "go

[N wiiav]EN

N T 0| w
zZ

Figure 3-34 Translation Table Base Control Register format

Table 3-57 lists how the bit values correspond with the Translation Table Base Register O
functions.

Table 3-57 Translation Table Base Control Register bit functions

Bits Field name Function

[31:6] -

[5] PDI1
[4] PDO
[3] -
[2:0] N

UNP/SBZ.

Specifies occurrence of a page table walk on a TLB miss when using Translation Table Base
Register 1. When page table walk is disabled, a Section Fault occurs instead on a TLB miss:

0 = The processor performs a page table walk on a TLB miss, with Secure or Non-secure
privilege appropriate to the current world. This is the reset value

1 = The processor does not perform a page table walk. If a TLB miss occurs with Translation
Table Base Register 1 in use, the processor returns a Section Translation Fault.

Specifies occurrence of a page table walk on a TLB miss when using Translation Table Base
Register 0. When page table walk is disabled, a Section Fault occurs instead on a TLB miss:

0 = The processor performs a page table walk on a TLB miss, with Secure or Non-secure
privilege appropriate to the current world. This is the reset value

1 = The processor does not perform a page table walk. If a TLB miss occurs with Translation
Table Base Register 0 in use, the processor returns a Section Translation Fault.

UNP/SBZ.

Specifies the boundary size of Translation Table Base Register 0:
b000 = 16KB, reset value

b001 = 8KB
b010 = 4KB
b011 = 2KB
b100 = 1IKB

bl101 = 512-byte
b110 = 256-byte
bl11 = 128-byte.

Attempts to write to this register in Secure Privileged mode when CP15SDISABLE is HIGH
result in an Undefined exception, see TrustZone write access disable on page 2-9.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-61
Non-Confidential, Unrestricted Access

System Control Coprocessor

Table 3-58 lists the results of attempted access for each mode.

Table 3-58 Results of access to the Translation Table Base Control Register

Secure Privileged Non-secure Privileged
User
Read Write Read Write

Secure data Secure data Non-secure data Non-secure data Undefined exception

To use the Translation Table Base Control Register read or write CP15 with:
. Opcode_1 set to 0

. CRn set to c2

. CRm set to cO

. Opcode_2 set to 2.

For example:

MRC pl5, 0, <Rd>, c2, c0, 2 ; Read Translation Table Base Control Register
MCR p15, 0, <Rd>, c2, c0, 2 ; Write Translation Table Base Control Register

A translation table base register is selected like this:

. If N is set to 0, always use Translation Table Base Register 0. This is the default case at
reset. It is backwards compatible with ARMvS5 and earlier processors.

. If N is set greater than 0, and bits [31:32-N] of the VA are all 0, use Translation Table Base
Register 0, otherwise use Translation Table Base Register 1. N must be in the range 0-7.

Note

The ARM1176JZF-S processor cannot page table walk from level one cache. Therefore, if C is
set to 1, to ensure coherency, you must either store page tables in Inner write-through memory
or, if in Inner write-back, you must clean the appropriate cache entries after modification so that
the mechanism for the hardware page table walks sees them.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-62
Non-Confidential, Unrestricted Access

System Control Coprocessor

3.2.16 3, Domain Access Control Register

The purpose of the Domain Access Control Register is to hold the access permissions for a
maximum of 16 domains.

Table 3-59 lists the purposes of the individual bits in the Domain Access Control Register.

The Domain Access Control Register is:

. in CP15 ¢3
. a 32-bit read/write register banked for Secure and Non-secure worlds
. accessible in privileged modes only.

Figure 3-35 shows the bit arrangement of the Domain Access Control Register.

3130292827 26252423222120191817161514131211109 8 7 6 56 4 3 2 1 0

D15 (D14 | D13 (D12 (D11 |D10| D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | DO

Figure 3-35 Domain Access Control Register format

Table 3-59 lists how the bit values correspond with the Domain Access Control Register
functions.

Table 3-59 Domain Access Control Register bit functions

Bits

Field
name

Function

D<n>2

The purpose of the fields D15-D0 in the register is to define the access permissions for each one of
the 16 domains. These domains can be either sections, large pages or small pages of memory:

b00 = No access, reset value. Any access generates a domain fault.
b01 = Client. Accesses are checked against the access permission bits in the TLB entry.
b10 = Reserved. Any access generates a domain fault.

bl1 = Manager. Accesses are not checked against the access permission bits in the TLB entry, so a
permission fault cannot be generated.

a.

n is the Domain number in the range between 0 and 15

Attempts to write to this register in Secure Privileged mode when CP15SDISABLE is HIGH
result in an Undefined exception, see TrustZone write access disable on page 2-9.

Table 3-60 lists the results of attempted access for each mode.

Table 3-60 Results of access to the Domain Access Control Register

Secure Privileged Non-secure Privileged
User
Read Write Read Write

Secure data Secure data Non-secure data Non-secure data Undefined exception

To use the Domain Access Control Register read or write CP15 ¢3 with:
. Opcode_1 set to 0

. CRn set to c3

. CRm set to cO

o Opcode_2 set to 0.

For example:

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-63
Non-Confidential, Unrestricted Access

3.217

System Control Coprocessor

MRC p15, @, <Rd>, c3, c0, 0 ; Read Domain Access Control Register
MCR p15, 0, <Rd>, c3, c0, 0 ; Write Domain Access Control Register

c5, Data Fault Status Register

The purpose of the Data Fault Status Register is to hold the source of the last data fault.
Table 3-61 lists the purposes of the individual bits in the Data Fault Status Register.

The Data Fault Status Register is:

. in CP15 ¢5
. a 32-bit read/write register banked for Secure and Non-secure worlds
. accessible in privileged modes only.

Figure 3-36 shows the bit arrangement in the Data Fault Status Register.

31 13121110 9 8 7 4 3 0

S|R .
UNP/SBZ Dlw S|0|0| Domain Status

Figure 3-36 Data Fault Status Register format

Table 3-61 shows how the bit values correspond with the Data Fault Status Register functions.

Table 3-61 Data Fault Status Register bit functions

Bits Field Function
name
[31:13] - UNP/SBZ.
[12] SD Indicates if an AXI Decode or Slave error caused an abort. This is only valid for external
aborts. For all other aborts this Should Be Zero. See Fault status and address on
page 6-34:
0 = AXI Decode error caused the abort, reset value
1 = AXI Slave error caused the abort.
[11] RW Indicates whether a read or write access caused an abort:
0 = Read access caused the abort, reset value
1 = Write access caused the abort.
[10] S Part of the Status field. See Bits [3:0] in this table. The reset value is O.
[9:8] - Always read as 0. Writes ignored.
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 3-64

ID012310

Non-Confidential, Unrestricted Access

System Control Coprocessor

Table 3-61 Data Fault Status Register bit functions (continued)

Bits Field Function
name
[7:4] Domain Indicates the domain from the 16 domains, D15-D0, is accessed when a data fault occurs.
Takes values 0-15. The reset value is 0.
[3:0] Status Indicates type of fault generated. See Fault status and address on page 6-34 for full
with bit[10] = 0 details of Domain and FAR validity, and priorities:
b0000 = no function, reset value
b0001 = Alignment fault
b0010 = Instruction debug event fault
b0011 = Access Bit fault on Section
b0100 = Instruction cache maintenance operation fault
b0101 = Translation Section fault
b0110 = Access Bit fault on Page
b0111 = Translation Page fault
b1000 = Precise external abort
b1001 = Domain Section fault
b1010 = no function
b1011 = Domain Page fault
b1100 = External abort on translation, first level
b1101 = Permission Section fault
b1110 = External abort on translation, second level
b1111 = Permission Page fault.
[3:0] Status Indicates type of fault generated. See Fault status and address on page 6-34 for full
with bit[10] = 1 details of Domain and FAR validity, and priorities:
b0000 = no function, reset value
b0001 = no function
b0010 = no function
b0011 = no function
b0100 = no function
b0101 = no function
b0110 = Imprecise external abort
b0111 = no function
b1000 = no function
b1001 = no function
b1010 = no function
b1011 = no function
b1100 = no function
b1101 = no function
b1110 = no function
bl111 = no function.
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 3-65

ID012310

Non-Confidential, Unrestricted Access

System Control Coprocessor

Table 3-62 lists the results of attempted access for each mode.

Table 3-62 Results of access to the Data Fault Status Register

Secure Privileged Non-secure Privileged
User
Read Write Read Write

Secure data Secure data Non-secure data Non-secure data ~ Undefined exception

Note

When the SCR EA bit is set, see cl, Secure Configuration Register on page 3-52, the processor
writes to the Secure Data Fault Status Register on a Secure Monitor entry caused by an external
abort.

To use the Data Fault Status Register read or write CP15 with:
. Opcode_1 set to 0

. CRn set to c5

. CRm set to cO

. Opcode_2 set to 0.

For example:

MRC p15, @, <Rd>, c5, c0, 0 ; Read Data Fault Status Register

MCR p15, 0, <Rd>, c5, c0, 0 ; Write Data Fault Status Register
3.2.18 c5, Instruction Fault Status Register

The purpose of the Instruction Fault Status Register (IFSR) is to hold the source of the last
instruction fault.

Table 3-63 on page 3-67 lists the purposes of the individual bits in IFSR.

The Instruction Fault Status Register is:

. in CP15 ¢5

. a 32-bit read/write register banked for Secure and Non-secure worlds
. accessible in privileged modes only.

Figure 3-37 shows the bit arrangement of the Instruction Fault Status Register.

31 13121110 9 4 3 0
s S
UNP/SBZ D B|O UNP/SBZ Status

Z

Figure 3-37 Instruction Fault Status Register format

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 3-66
ID012310 Non-Confidential, Unrestricted Access

System Control Coprocessor

Table 3-63 lists how the bit values correspond with the Instruction Fault Status Register

functions.
Table 3-63 Instruction Fault Status Register bit functions
Bits Field Function
name

[31:13] - UNP/SBZ.
[12] SD Indicates whether an AXI Decode or Slave error caused an abort. This bit is only valid for

external aborts. For all other aborts this bit Should Be Zero. See Fault status and address on

page 6-34:

0 = AXI Decode error caused the abort, reset value
1 = AXI Slave error caused the abort.

[11] - UNP/SBZ.

[10] - Part of the Status field, see bits [3:0] in this table.
Always 0.

[9:4] - UNP/SBZ.

[3:0] with Status Indicates type of fault generated.

bit[10] =0 See Fault status and address on page 6-34 for full details of Domain and FAR validity, and
priorities:

b0000 = no function, reset value

b0001= Alignment fault

b0010 = Instruction debug event fault

b0011 = Access Bit fault on Section

b0100 = no function

b0101 = Translation Section fault

b0110 = Access Bit fault on Page

b0111 = Translation Page fault

b1000 = Precise external abort

b1001 = Domain Section fault

b1010 = no function

b1011 = Domain Page fault

b1100 = External abort on translation, first level
b1101 = Permission Section fault

b1110 = External abort on translation, second level
bl1111 = Permission Page fault.

Table 3-64 lists the results of attempted access for each mode.

Table 3-64 Results of access to the Instruction Fault Status Register

Secure Privileged Non-secure Privileged
User
Read Write Read Write

Secure data Secure data Non-secure data Non-secure data Undefined exception

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 3-67
ID012310 Non-Confidential, Unrestricted Access

System Control Coprocessor

Note
When the SCR EA bit is set, see cl, Secure Configuration Register on page 3-52, the processor
writes to the Secure Instruction Fault Status Register on a Secure Monitor entry caused by an
external abort.

To use the IFSR read or write CP15 with:
. Opcode_1 set to 0

. CRn set to c5

. CRm set to cO

. Opcode_2 set to 1.

For example:

MRC pl5, 0, <Rd>, c5, c0, 1 ; Read Instruction Fault Status Register
MCR p15, @, <Rd>, c5, c0, 1 ; Write Instruction Fault Status Register

3.2.19 c6, Fault Address Register

The purpose of the Fault Address Register (FAR) is to hold the Modified Virtual Address (MVA)
of the fault when a precise abort occurs.

The FAR is:

. in CP15 ¢6

. a 32-bit read/write register banked for Secure and Non-secure worlds
. accessible in privileged modes only.

The Fault Address Register bits [31:0] contain the MVA that the precise abort occurred on. The
reset value is 0.

Table 3-65 lists the results of attempted access for each mode.

Table 3-65 Results of access to the Fault Address Register

Secure Privileged Non-secure Privileged
User
Read Write Read Write

Secure data Secure data Non-secure data Non-secure data ~ Undefined exception

To use the FAR read or write CP15 with:
. Opcode_1 set to 0

. CRn set to c6

. CRm set to cO

. Opcode_2 set to 0.

For example:

MRC pl5, 0, <Rd>, c6, c0, 0 ; Read Fault Address Register
MCR p15, @, <Rd>, c6, c0, 0 ; Write Fault Address Register

A write to this register sets the FAR to the value of the data written. This is useful for a debugger
to restore the value of the FAR.

The ARM1176JZF-S processor also updates the FAR on debug exception entry because of
watchpoints, see Effect of a debug event on CP15 registers on page 13-34 for more details.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-68
Non-Confidential, Unrestricted Access

System Control Coprocessor

3.2.20 ¢6, Watchpoint Fault Address Register

Access to the Watchpoint Fault Address register through the system control coprocessor is
deprecated, see CP14 c6, Watchpoint Fault Address Register (WFAR) on page 13-12.

3.2.21 c6, Instruction Fault Address Register

The purpose of the Instruction Fault Address Register (IFAR) is to hold the address of
instructions that cause a prefetch abort.

The IFAR is:

. in CP15 ¢c6

. a 32-bit read/write register banked for Secure and Non-secure worlds
. accessible in privileged modes only.

The Instruction Fault Address Register bits [31:0] contain the Instruction Fault MVA. The reset
value is 0.

Table 3-66 lists the results of attempted access for each mode.

Table 3-66 Results of access to the Instruction Fault Address Register

Secure Privileged Non-secure Privileged
User
Read Write Read Write

Secure data Secure data Non-secure data Non-secure data Undefined exception

To use the IFAR read or write CP15 with:
. Opcode_1 set to 0

. CRn set to c6

. CRm set to cO

. Opcode_2 set to 2.

For example:

MRC p15, 0, <Rd>, c6, c0, 2 ; Read Instruction Fault Address Register
MCR p15, 0, <Rd>, c6, c0, 2 ; Write Instruction Fault Address Register

A write to this register sets the IFAR to the value of the data written. This is useful for a debugger
to restore the value of the IFAR.

3.2.22 c7, Cache operations

The purpose of c7 is to:

. control these operations:
— clean and invalidate instruction and data caches, including range operations
— prefetch instruction cache line
— Flush Prefetch Buffer
— flush branch target address cache

— virtual to physical address translation.
. implement the Data Synchronization Barrier (DSB) operation

. implement the Data Memory Barrier (DMB) operation

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-69
Non-Confidential, Unrestricted Access

System Control Coprocessor

. implement the Wait For Interrupt clock control function.

Note
Cache operations also depend on:
. the C, W, I and RR bits, see cI, Control Register on page 3-44.
. the RA and RV bits, see c/, Auxiliary Control Register on page 3-48.

The following cache operations globally flush the BTAC:
. Invalidate Entire Instruction Cache
. Invalidate Both Caches.

c7 consists of one 32-bit register that performs 28 functions. Figure 3-38 shows the arrangement
of the 24 functions in this group that operate with the MCR and MRC instructions.

CRn Opcode_1 CRm Opcode_2
c7 0 c0 4 SBZ Wait For Interrupt (WFI)
—c4d———0—— PA Register
——c5 0—— sBz Invalidate Entire Instruction Cache
——1——> MVA Invalidate Instruction Cache Line (using MVA)
——2—> Index| Invalidate Instruction Cache Line (using Index)
4 SBZ Flush Prefetch Buffer

——6——> SBZ Flush Entire Branch Target Cache
——7—— MVA Flush Branch Target Cache Entry

—c6 0—— sBz Invalidate Entire Data Cache

——1—— MVA Invalidate Data Cache Line (using MVA)
——2— Index Invalidate Data Cache Line (using Index)

F—c7——0—— sBz Invalidate Both Caches
—08—-|:0-H VA to PA Translation in the current world
4-7— VA to PA Translation in the other world
—c10 0—— sBz Clean Entire Data Cache
——1——> MVA Clean Data Cache Line (using MVA)
——2—Index| Clean Data Cache Line (using Index)
4 SBZ Data Synchronization Barrier (DSB)
——5—— SBZ Data Memory Barrier (DMB)
—6—— Cache Dirty Status Register
—c13 1 MVA Prefetch Instruction Cache Line
—c14 0—— sBz Clean and Invalidate Entire Data Cache
——1—— MVA Clean and Invalidate Data Cache Line (using MVA)

——2—3 Index Clean and Invalidate Data Cache Line (using Index)

|:| Read-only |:| Read/write Write only Accessible in User mode
SBZ | Should Be Zero

MVA |Using MVA

Index | Using Set and Index

Figure 3-38 Cache operations

Figure 3-39 on page 3-71 shows the arrangement of the 4 functions in this group that operate
with the MCRR instruction.

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 3-70
ID012310 Non-Confidential, Unrestricted Access

System Control Coprocessor

Opcode_1 CRm

0 c5 » VA | Invalidate Instruction Cache Range
c6 » VA Invalidate Data Cache Range
c12 » VA | Clean Data Cache Range
cl4————» VA Clean and Invalidate Data Cache Range

|:| Read-only |:| Read/write Using VA Accessible in User mode

Figure 3-39 Cache operations with MCRR instructions

Note

Writing ¢7 with a combination of CRm and Opcode_2 not listed in Figure 3-38 on

page 3-70 or CRm not listed in Figure 3-39 results in an Undefined exception apart from
the following operations, that are architecturally defined as unified cache operations and
have no effect:

— MCR p15,0,<Rd>,c7,c7,{1-7}
— MCR p15,0,<Rd>,c7,cll,{0-7}
— MCR p15,0,<Rd>,c7,c15,{0-7}.

In the ARM1176JZF-S processor, reading from c7, except for reads from the Cache Dirty
Status Register or PA Register, causes an Undefined instruction trap.

Writes to the Cache Dirty Status Register cause an Undefined exception.

If Opcode_1 = 0, these instructions are applied to a level one cache system. All other
Opcode_1 values are reserved.

All accesses to ¢7 can only be executed in a privileged mode of operation, except Data
Synchronization Barrier, Flush Prefetch Buffer, Data Memory Barrier, and Clean Data
Cache Range. These can be operated in User mode. Attempting to execute a privileged
instruction in User mode results in the Undefined instruction trap being taken.

There are three ways to use c7:

For the Cache Dirty Status Register, read c¢7 with the MRC instruction.

For range operations use the MCRR instruction with the value of CRm to select the
required operation.

For all other operations use the MCR instruction to write to ¢7 with the combination of
CRm and Opcode_2 to select the required operation.

Depending on the operation you require set <Rd> for MCR instructions or <Rd> and
<Rn> for MCRR instructions to:

— Virtual Address (VA)

— Modified Virtual Address (MVA)
— Set and Index

— Should Be Zero.

Invalidate, Clean, and Prefetch operations

The purposes of the invalidate, clean, and prefetch operations that c7 provides are to:

Invalidate part or all of the Data or Instruction caches
Clean part or all of the Data cache
Clean and Invalidate part or all of the Data cache

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-71
Non-Confidential, Unrestricted Access

. Prefetch code into the Instruction cache.

System Control Coprocessor

The terms used to describe the invalidate, clean, and prefetch operations are as defined in the
Caches and Write Buffers chapter of the ARM Architecture Reference Manual.

For details of the behavior of ¢7 in the Secure and Non-secure worlds, see TrustZone behavior

on page

3-77.

When it controls invalidate, clean, and prefetch operations c7 appears as a 32-bit write only
register. There are four possible formats for the data that you write to the register that depend on
the specific operation:

. Set and Index format
. MVA

. VA

. SBZ.

Set and Index format

Figure 3-40 shows the Set and Index format for invalidate and clean operations.

3130 29 S+5 S+4

5 4 1

0

Set

SBZ/UNP

Index

SBZ/UNP | 0

Figure 3-40 c7 format for Set and Index

Table 3-67 lists how the bit values correspond with the Cache Operation functions

for Set and Index format operations.

Table 3-67 Functional bits of c7 for Set and Index

Bits Field name Function

[31:30] Set Selects the cache set to operate on, from the four cache sets.

Value is the cache set number.

[29:S+5] - UNP/SBZ.

[S+4:5] Index Selects the cache line to operate on.
Value is the index number.

[4:1] - SBZ.

[0] 0 For the ARM1176JZF-S, this Should Be Zero.

The value of S in Table 3-68 depends on the cache size. Table 3-68 lists the

relationship of cache sizes and S.

Table 3-68 Cache size and S parameter dependency

Cache size S
4KB 5
8KB 6
16KB 7
32KB 8
64KB 9
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 3-72

ID012310

Non-Confidential, Unrestricted Access

System Control Coprocessor

The value of S is given by:

cache size
S =log, —— - -
Associativity x line length in bytes
See c0, Cache Type Register on page 3-21 for details of instruction and data cache
size.

Note

If the data is stated to be Set and Index format, see Figure 3-40 on page 3-72, it
identifies the cache line that the operation applies to by specifying the cache Set
that it belongs to and what its Index is within the Set. The Set corresponds to the
number of the cache way, and the Index number corresponds to the line number
within a cache way.

MVA format

Figure 3-41 shows the MVA format for invalidate, clean, and prefetch operations.

31 5 4 0

Modified virtual address SBZ

Figure 3-41 c7 format for MVA

Table 3-69 lists how the bit values correspond with the Cache Operation functions
for MVA format operations.

Table 3-69 Functional bits of c7 for MVA

Bits Field name Function

[31:5] MVA Specifies address to invalidate, clean, or prefetch.
Holds the MVA of the cache line.

[4:0] - Ignored. This means that the lower 5 bits of MVA are ignored and these bits are not used for the
cache operations. Only the top bits are necessary to determine whether or not the cache line is
present in the cache. Even if the MVA is not aligned to the cache line, the cache operation is
performed by ignoring the lower 5 bits.

— Note

. Invalidation and cleaning operations have no effect if they miss in the
cache.

. If the corresponding entry is not in the TLB, these instructions can cause a

TLB miss exception or hardware page table walk, depending on the miss
handling mechanism.

. For the cache control operations, the MVAs that are passed to the cache are
not translated by the FCSE extension.

VA format
Figure 3-42 shows the VA format for invalidate and clean operations. All VA
format operations use the MCRR instruction.
31 5 4 0
Virtual address SBZ
Figure 3-42 Format of c7 for VA
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 3-73

ID012310 Non-Confidential, Unrestricted Access

System Control Coprocessor

Table 3-70 lists how the bit values correspond with the Cache Operation functions
for VA format operations.

Table 3-70 Functional bits of c7 for VA format

Bits

Field name Function

[31:5]

Virtual address ~ Specifies the start or end address to invalidate or clean.

Holds the true VA of the start or end of a memory block before any modification by FCSE.

[4:0]

SBZ.

You can perform invalidate, clean, and prefetch operations on:

single cache lines
entire caches
address ranges in cache.

Note

Clean, invalidate, and clean and invalidate operations apply regardless of the lock applied
to entries.

An explicit flush of the relevant lines in the branch target cache must be performed after
invalidation of Instruction Cache lines or the results are Unpredictable. There is no impact
on security. This is not required after an entire Instruction Cache invalidation because the
entire branch target cache is flushed automatically.

A small number of CP15 c7 operations can be executed by code while in User mode.
Attempting to execute a privileged operation in User mode using CP15 ¢7 results in an
Undefined instruction trap being taken.

To determine if the cache is dirty use the Cache Dirty Status Register, see Cache Dirty Status
Register on page 3-78.

Entire cache

Table 3-71 lists the instructions and operations that you can use to clean and
invalidate the entire cache.

Table 3-71 Cache operations for entire cache

Instruction

Data Function

MCR p15, 0,

MCR pl15, 0,

<Rd>, c7, c5, @ SBZ Invalidate Entire Instruction Cache.
Also flushes the branch target cache and globally flushes the BTAC.

<Rd>, c7, c6, 0 SBZ Invalidate Entire Data Cache.

MCR pl15, 0,

<Rd>, c7, c7, 0 SBZ Invalidate Both Caches.
Also flushes the branch target cache and globally flushes the BTAC.

MCR p15, 0,

<Rd>, c7, c10, 0 SBZ Clean Entire Data Cache.

MCR p15, 0,

<Rd>, c7, cl4, @ SBZ Clean and Invalidate Entire Data Cache.

Register c7 specifies operations for cleaning the entire Data Cache, and also for
performing a clean and invalidate of the entire Data Cache. These are blocking
operations that can be interrupted. If they are interrupted, the R14 value that is

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-74
Non-Confidential, Unrestricted Access

System Control Coprocessor

captured on the interrupt is the address of the instruction that launched the cache
clean operation + 4. This enables the standard return mechanism for interrupts to
restart the operation.

If it is essential that the cache is clean, or clean and invalid, for a particular
operation, the sequence of instructions for cleaning, or cleaning and invalidating,
the cache for that operation must handle the arrival of an interrupt at any time
when interrupts are not disabled. This is because interrupts can write to a
previously clean cache. For this reason, the Cache Dirty Status Register indicates
if the cache has been written to since the last clean of the cache was started, see
Cache Dirty Status Register on page 3-78. You can interrogate the Cache Dirty
Status Register to determine if the cache is clean, and if this is done while
interrupts are disabled, the following operations can rely on having a clean cache.
The following sequence shows this approach:

; interrupts are assumed to be enabled at this point
Loopl MOV R1, #0

MCR CP15, 0, R1, C7, Cl10, 0 ; Clean (or Clean & Invalidate) Cache
MRS R2, CPSR
CPSID iaf ; Disable interrupts

MRC CP15, 0, R1, C7, Cl10, 6 ; Read Cache Dirty Status Register
ANDS R1, R1, #1 Check if it is clean
BEQ UseClean
MSR CPSR, R2
B Loopl
UseClean Do_Clean_Operations

Re-enable interrupts
- clean the cache again
Perform whatever operation relies on
the cache being clean/invalid.
To reduce impact on interrupt
latency, this sequence should be
; short
MSR CPSR, R2 ; Re-enable interrupts

The long cache clean operation is performed with interrupts enabled throughout
this routine.
Single cache lines

There are two ways to perform invalidate or clean operations on cache lines:
d by use of Set and Index format
. by use of MVA format.

Table 3-72 lists the instructions and operations that you can use for single cache

lines.
Table 3-72 Cache operations for single lines
Instruction Data Function
MCR p15, @, <Rd>, c7, c5, 1 MVA Invalidate Instruction Cache Line, using MVA

MCR p15, @, <Rd>, c7, c5, 2 Set/Index Invalidate Instruction Cache Line, using Index

MCR p15, @, <Rd>, c7, c6, 1 MVA Invalidate Data Cache Line, using MVA

MCR p15, 0, <Rd>, c7, c6, 2 Set/Index Invalidate Data Cache Line, using Index
MCR p15, @, <Rd>, c7, c10, 1 MVA Clean Data Cache Line, using MVA

MCR p15, @, <Rd>, c7, c10, 2 Set/Index Clean Data Cache Line, using Index

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 3-75
ID012310 Non-Confidential, Unrestricted Access

System Control Coprocessor

Table 3-72 Cache operations for single lines (continued)

Instruction Data Function
MCR pl5, 0, <Rd>, c7, c13, 1 MVA Prefetch Instruction Cache Line
MCR p15, @, <Rd>, c7, c14, 1 MVA Clean and Invalidate Data Cache Line, using MVA

MCR p15, @, <Rd>, c7, c14, 2 Set/Index Clean and Invalidate Data Cache Line, using Index

Example 3-1 shows how to use Clean and Invalidate Data Cache Line with Set
and Index to clean and invalidate one whole cache way, in this example, way 3.
The example works with any cache size because it reads the cache size from the
Cache Type Register.

Example 3-1 Clean and Invalidate Data Cache Line with Set and Index

MRC p15,0,R0,c0,c0,1 ; Read cache type reg

AND RO,RO,#0x1C0000 ; Extract D cache size

MOV RO,RO, LSR #18 ; Move to bottom bits

ADD RO,RO,#7 ; Get Index Toop max

MoV r1,#3:SHL:30 ; Set up Set = 3

MOV R2,#0 ; Set up Index counter

MoV R3,#1

MoV R3,R3, LSL RO ; Set up Index loop max
index_Toop

ORR R4,R2,rl ; Set and Index format

MCR p15,0,R4,c7,cl4,2 ; Clean&inval D cache Tine

ADD R2,R2,#1:SHL:5 ; Increment Index

CcMP R2,R3 ; Done all index values?

BNE index_Toop ; Loop until done

Address ranges

Table 3-73 lists the instructions and operations that you can use to clean and
invalidate the address ranges in cache.

Table 3-73 Cache operations for address ranges

Instruction Data Function

MCRR p15,0,<End Address>,<Start Address>,c5 VA Invalidate Instruction Cache Range

MCRR p15,0,<End Address>,<Start Address>,c6 VA Invalidate Data Cache Range

MCRR p15,0,<End Address>,<Start Address>,c12 VA Clean Data Cache Range?

MCRR p15,0,<End Address>,<Start Address>,cl4 VA Clean and Invalidate Data Cache Range

a. This operation is accessible in both User and privileged modes of operation. All other operations listed
here are only accessible in privileged modes of operation.

The operations in Table 3-73 can only be performed using an MCRR or MCRR2
instruction, and all other operations to these registers are ignored.

The End Address and Start Address in Table 3-73 is the true VA before any
modification by the Fast Context Switch Extension (FCSE). This address is
translated by the FCSE logic. Each of the range operations operates between
cache lines containing the Start Address and the End Address, inclusive of Start
Address and End Address.

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 3-76
ID012310 Non-Confidential, Unrestricted Access

System Control Coprocessor

Because the least significant address bits are ignored, the transfer automatically
adjusts to a line length multiple spanning the programmed addresses.

The Start Address is the first VA of the block transfer. It uses the VA bits [31:5].
The End Address is the VA where the block transfer stops. This address is at the
start of the line containing the last address to be handled by the block transfer. It
uses the VA bits [31:5].

If the Start Address is greater than the End Address the effect is architecturally Unpredictable.
The ARM1176JZF-S processor does not perform cache operations in this case. All block
transfers are interruptible. When Block transfers are interrupted, the R14 value that is captured
is the address of the instruction that launched the block operation + 4. This enables the standard
return mechanism for interrupts to restart the operation.

Exception behavior

The blocking block transfers cause a Data Abort on a translation fault if a valid page table entry
cannot be fetched. The FAR indicates the address that caused the fault, and the DFSR indicates
the reason for the fault.

TrustZone behavior
TrustZone affects cache operations as follows:

Secure world operations

In the Secure world cache operations can affect both Secure and Non-secure
cache lines:

. Clean, invalidate, and clean and invalidate operations affect all cache lines
regardless of their status as locked or unlocked.

o For clean, invalidate, and clean and invalidate operations with the Set and
Index format, the selected cache line is affected regardless of the Secure
tag.

. For MVA operations clean, invalidate, and clean and invalidate:

— when the MVA is marked as Non-secure in the page table, only
Non-secure entries are affected

— when the MVA is marked as Secure in the page table, only Secure
entries are affected.
Non-secure world operations

In the Non-secure world:

. Clean, invalidate, and clean and invalidate operations only affect
Non-secure cache lines regardless of the method used.

. Any attempt to access Secure cache lines is ignored.

d Invalidate Entire Data Cache and Invalidate Both Caches operations cause

an Undefined exception. This prevents invalidating lockdown entries that
might be configured as Secure.

— the Invalidate Both Caches operation globally flushes the BTAC.
. Invalidate Entire Instruction Cache operations:

— cause an Undefined exception if lockdown entries are reserved for the
Secure world

— affect all Secure and Non-secure cache entries if the lockdown entries
are not reserved for the Secure world

— globally flush the BTAC.

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 3-77
ID012310 Non-Confidential, Unrestricted Access

System Control Coprocessor

Cache Dirty Status Register
The purpose of the Cache Dirty Status Register is to indicate when the Cache is dirty.

The Cache Dirty Status Register is:

. in CP15 c7
. a 32-bit read only register, banked for Secure and Non-secure worlds
. accessible in privileged modes only.

Figure 3-43 shows the arrangement of bits in the Cache Dirty Status Register.

31 10

UNP/SBZ C

Figure 3-43 Cache Dirty Status Register format

Table 3-74 lists how the bit value corresponds with the Cache Dirty Status Register function.

Table 3-74 Cache Dirty Status Register bit functions

Bits

Field name Function

[31:1]

UNP/SBZ.

(0]

C

The C bit indicates if the cache is dirty.

0 = indicates that no write has hit the cache since the last cache clean, clean and invalidate, or
invalidate all operation, or reset, successfully left the cache clean. This is the reset value.

1 = indicates that the cache might contain dirty data.

The Cache Dirty Status Register behaves in this way with regard to the Secure and Non-secure
cache:

. clean, invalidate, and clean and invalidate operations of the whole cache in the Non-secure
world clear the Non-secure Cache Dirty Status Register

o clear, invalidate, and clean and invalidate operations of the whole cache in the Secure
world clear both the Secure and Non-secure Cache Dirty Status Registers

. if the core is in the Non-secure world or targets Non-secure data from the Secure world,
stores that write a dirty bit in the cache set both the Secure and the Non-secure Cache Dirty
Status Register

. all stores that write a dirty bit in the cache set the Secure Cache Dirty Status Register.

All writes and User mode reads of the Cache Dirty Status Register cause an Undefined
exception.

To use the Cache Dirty Status Register read CP15 with:
. Opcode_1 set to 0

. CRn set to c7

. CRm setto c10

. Opcode_2 set to 6.

For example:

MRC p15, 0, <Rd>, c7, cl0, 6 ; Read Cache Dirty Status Register.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-78
Non-Confidential, Unrestricted Access

System Control Coprocessor

Flush operations
Table 3-75 lists the flush operations and instructions available through c7.

Table 3-75 Cache operations flush functions

Instruction Data Function

MCR p15, @, <Rd>, c7, c5, 4 SBZ Flush Prefetch Buffera,

MCR p15, @, <Rd>, c7, ¢5, 6 SBZ Flush Entire Branch Target Cacheb.

MCR p15, @, <Rd>, c7, c5, 7 MVAc Flush Branch Target Cache Entry with MVA.

a. These operations are accessible in both User and privileged modes of operation. All
other operations are only accessible in privileged modes of operation.

b. This operation is accessible in both Privileged and User modes of operation when in
Debug state.

c. The range of MVA bits used in this function is different to the range of bits used in other
functions that have MVA data.

The Flush Branch Target Entry using MVA operation uses a different MVA format to that used
by Clean and Invalidate operations. Figure 3-44 shows the MVA format for the Flush Branch
Target Entry operation.

31 3 2 0

MVA SBZ

Figure 3-44 c7 format for Flush Branch Target Entry using MVA

Table 3-76 lists how the bit values correspond with the Flush Branch Target Entry using MVA
functions.

Table 3-76 Flush Branch Target Entry using MVA bit functions

Bits Field name Function

[31:3] MVA Specifies address to flush.
Holds the MVA of the Branch Target Cache line.

[2:0] - SBZ.

Note
The MVA does not have to be cache line aligned.

Flushing the prefetch buffer has the effect that all instructions occurring in program order after
this instruction are fetched from the memory system after the execution of this instruction,
including the level one cache or TCM. This operation is useful for ensuring the correct execution
of self-modifying code. See Explicit Memory Barriers on page 6-25.

VA to PA translation operations

The purpose of the VA to PA translation operations is to provide a Secure means to determine
address translation in the Secure and Non-secure worlds and for address translation between the
Secure and Non-secure worlds. VA to PA translations operate through:

. PA Register on page 3-80

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-79
Non-Confidential, Unrestricted Access

System Control Coprocessor

. VA to PA translation in the current world on page 3-82
. VA to PA translation in the other world on page 3-83.

PA Register

The purpose of the PA Register is to hold:
. the PA after a successful translation
. the source of the abort for an unsuccessful translation.

Table 3-77 lists the purpose of the bits of the PA Register for successful translations and
Table 3-78 on page 3-81 lists the purpose of the bits of the PA Register for unsuccessful
translations.

The PA Register is:

. in CP15 ¢7

. a 32 bit read/write register banked in Secure and Non-secure worlds
. accessible in privileged modes only.

Figure 3-45 shows the format of the PA Register for successful translations.

31 1098765 43210
N S
PA s P H -0

INNEF{J |—OUTER

Figure 3-45 PA Register format for successful translation

Figure 3-46 shows the format of the PA register for aborted translations.

31 7 6 10

UNP / SBZ FSR[12,10,3:0] |1

Figure 3-46 PA Register format for aborted translation
Table 3-77 lists the functional bits of the PA Register for successful translation.

Table 3-77 PA Register for successful translation bit functions

Bits Field name Function
[31:10] PA PA Translated physical address.
9] NS Indicates the state of the NS Attribute bit in the page table:

0 = Secure memory
1 = Non-secure memory.

[8] P Not used in the ARM1176JZF-S processor.
UNP/SBZ.
[7] SH Indicates shareable memory:
0 = Non-shared
1 = Shared.
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 3-80

ID012310 Non-Confidential, Unrestricted Access

System Control Coprocessor

Table 3-77 PA Register for successful translation bit functions (continued)

Bits Field name Function

[6:4] INNER Indicates the inner attributes from the page table:
b000 = Noncacheable
b001 = Strongly Ordered
b010 = Reserved
b011 = Device
b100 = Reserved
b101 = Reserved
b110 = Inner Write-through, no allocate on write
b111 = Inner Write-back, no allocate on write.

[3:2] OUTER Indicates the outer attributes from the page table:
b00 = Noncacheable
b01 = Write-back, allocate on write
b10 = Write-through, no allocate on write
bl1 = Write-back, no allocate on write.

[1] - Reserved.
UNP/SBZ.
[0] - Indicates that the translation succeeded:

0 = Translation successful.

Table 3-78 lists the functional bits of the PA Register for aborted translation.

Table 3-78 PA Register for unsuccessful translation bit functions

Bits

Field name Function

[31:7]

- UNP/SBZ.

[6:1]

FSR[12,10,3:0] Holds the FSR bits for the aborted address, see ¢5, Data Fault Status Register on page 3-64
and c¢5, Instruction Fault Status Register on page 3-66.

FSR bits [12], [10], and [3:0].

(0]

- Indicates that the translation aborted:
1 = Translation aborted.

Attempts to access the PA Register in User mode results in an Undefined exception.

Note

The VA to PA translation can only generate an abort to the core if the operation failed because
an external abort occurred on the possible page table request. In this case, the processor updates
the Secure or Non-secure version of the PA register, depending on the Secure or Non-secure
state of the core when the operation was issued. The processor also updates the Data Fault Status
Register and the Fault Address Register:

. if the EA bit in the Secure Configuration Register is set, the Secure versions of the two
registers are updated and the processor traps the abort into Secure Monitor mode

. if the EA bit in the Secure Configuration Register is not set, the processor updates the
Secure or Non-secure versions of the two registers, depending on the Secure or
Non-secure state of the core when the operation was issued.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-81
Non-Confidential, Unrestricted Access

System Control Coprocessor

For all other cases when the VA to PA operation fails, the processor only updates the PA register,
Secure or Non-secure version, depending on the Secure or Non-secure state of the core when
the operation was issued, with the Fault Status Register encoding and bit[0] set. The Data Fault
Status Register and Fault Address Register remain unchanged and the processor does not send
an abort to the core.

To use the PA Register read or write CP15 c7 with:
. Opcode_1 set to 0

. CRn set to c7

. CRm set to c4

. Opcode_2 set to 0.

For example:

MRC p15, 0, <Rd>, c7, c4, 0 ; Read PA Register
MCR pl5, 0, <Rd>, c7, c4, 0 ; Write PA Register

VA to PA translation in the current world

The purpose of the VA to PA translation in the current world is to translate the address with the
current virtual mapping for either Secure or Non-secure worlds.

The VA to PA translation in the current world operations use:

. CP15c7
. four, 32-bit write-only operations common to the Secure and Non-secure worlds
. operations accessible in privileged modes only

The operations work for privileged or User access permissions and returns information in the
PA Register for aborts, when the translation is unsuccessful, or page table information, when the
translation succeeds.

Attempts to access the VA to PA translation operations in the current world in User mode result
in an Undefined exception.

To use the VA to PA translation in the current world write CP15 c¢7 with:
. Opcode_1 set to 0
. CRn set to c7
. CRm set to c8
. Opcode_2 set to:
— O for privileged read permission
— 1 for privileged write permission
— 2 for User read permission
— 3 for User write permission.

General register <Rn> contains the VA for translation. The result returns in the PA Register, for
example:

MCR p15,0,<Rn>,c7,c8,3 ;get VA = <Rn> and run VA-to-PA translation
;with User write permission.
;if the selected page table has the
;User write permission, the PA is loaded
;in PA register, otherwise abort information is
;loaded in PA Register

MRC p15,0,<Rd>,c7,c4,0 ;read in <Rd> the PA value

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-82
Non-Confidential, Unrestricted Access

System Control Coprocessor

Note
The VA that this operation uses is the true VA not the MVA.

VA to PA translation in the other world

The purpose of the VA to PA translation in the other world is to translate the address with the
current virtual mapping in the Non-secure world while the core is in the Secure world.

The VA to PA translation in the other world operations use:

. CPI15 c7
. four, 32-bit write-only operations in the Secure world only
. operations accessible in privileged modes only.

The operations work in the Secure world for Non-secure privileged or Non-secure User access
permissions and returns information in the PA Register for aborts, when the translation is
unsuccessful, or page table information, when the translation succeeds.

Attempts to access the VA to PA translation operations in the other world in any Non-secure or
User mode result in an Undefined exception.

To use the VA to PA translation in the other world write CP15 c7 with:
. Opcode_1 set to 0
. CRn set to c7
. CRm set to c8
. Opcode_2 set to:
— 4 for privileged read permission
— 5 for privileged write permission
— 6 for User read permission
— 7 for User write permission.

General register <Rn> contains the VA for translation. The result returns in the PA Register, for
example:

MCR p15,0,<Rn>,c7,c8,4 ;get VA = <Rn> and run Non-secure translation
;with Non-secure privileged read permission.
;if the selected page table has the
;privileged read permission, the PA is Toaded
;in PA register, otherwise abort information is
;Toaded in PA Register

MRC p15,0,<Rd>,c7,c4,0 ;read in <Rd> the PA value

Data Synchronization Barrier operation

The purpose of the Data Synchronization Barrier operation is to ensure that all outstanding
explicit memory transactions complete before any following instructions begin. This ensures
that data in memory is up to date before the processor executes any more instructions.

Note

The Data Synchronization Barrier operation is synonymous with Drain Write Buffer and Data
Write Barrier in earlier versions of the architecture.

The Data Synchronization Barrier operation is:
. in CP15 ¢7
o 32-bit write-only access, common to both Secure and Non-secure worlds

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-83
Non-Confidential, Unrestricted Access

System Control Coprocessor

. accessible in both User and Privileged modes.

Table 3-79 lists the results of attempted access for each mode.

Table 3-79 Results of access to the Data Synchronization Barrier operation

Read Write

Undefined exception Data

To use the Data Memory Barrier operation write CP15 with <Rd> SBZ and:
. Opcode_1 set to 0

. CRn set to c7

. CRm set to c10

. Opcode_2 set to 4.

For example:
MCR p15,0,<Rd>,c7,c10,4 ; Data Synchronization Barrier operation.

For more details, see Explicit Memory Barriers on page 6-25.

Note

The W bit that usually enables the Write Buffer is not implemented in ARM1176JZF-S
processors, see cl, Control Register on page 3-44.

This instruction acts as an explicit memory barrier. This instruction completes when all explicit
memory transactions occurring in program order before this instruction are completed. No
instructions occurring in program order after this instruction are executed until this instruction
completes. Therefore, no explicit memory transactions occurring in program order after this
instruction are started until this instruction completes. See Explicit Memory Barriers on

page 6-25.

It can be used instead of Strongly Ordered memory when the timing of specific stores to the
memory system has to be controlled. For example, when a store to an interrupt acknowledge
location must be completed before interrupts are enabled.

The Data Synchronization Barrier operation can be performed in both privileged and User
modes of operation.
Data Memory Barrier operation

The purpose of the Data Memory Barrier operation is to ensure that all outstanding explicit
memory transactions complete before any following explicit memory transactions begin. This
ensures that data in memory is up to date before any memory transaction that depends on it.

The Data Memory Barrier operation is:
. in CP15 ¢7

. a 32-bit write only operation, common to the Secure and Non-secure worlds
. accessible in User and Privileged mode.
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 3-84

ID012310 Non-Confidential, Unrestricted Access

System Control Coprocessor

Table 3-80 lists the results of attempted access for each mode.

Table 3-80 Results of access to the Data Memory Barrier operation

Read Write

Undefined exception Data

To use the Data Memory Barrier operation write CP15 with <Rd> SBZ and:
. Opcode_1 set to 0

. CRn set to c7

. CRm set to c10

. Opcode_2 set to 5.

For example:
MCR p15,0,<Rd>,c7,c10,5 ; Data Memory Barrier Operation.

For more details, see Explicit Memory Barriers on page 6-25.

Wait For Interrupt operation

The purpose of the Wait For Interrupt operation is to put the processor in to a low power state,
see Standby mode on page 10-3.

The Wait For Interrupt operation is:

. in CP15 c7

. 32-bit write only access, common to Secure and Non-secure worlds
. accessible in privileged modes only.

Table 3-81 lists the results of attempted access for each mode.

Table 3-81 Results of access to the Wait For Interrupt operation

Secure Privileged Non-secure Privileged

User
Write Read Write

Undefined exception ~ Wait For Interrupt ~ Undefined exception =~ Wait For Interrupt ~ Undefined exception

To use the Wait For Interrupt operation write CP15 with <Rd> SBZ and:
. Opcode_1 set to 0

. CRn set to c7

. CRm set to cO

. Opcode_2 set to 4.

For example:
MCR p15,0,<Rd>,c7,c0,4 ; Wait For Interrupt.

This puts the processor into a low-power state and stops it executing following instructions until
an interrupt, an imprecise external abort, or a debug request occurs, regardless of whether the
interrupts or external imprecise aborts are disabled by the masks in the CPSR. When an interrupt
does occur, the MCR instruction completes. If interrupts are enabled, the IRQ or FIQ handler is
entered as normal. The return link in R14_irq or R14_fiq contains the address of the MCR
instruction plus 8, so that the normal instruction used for interrupt return (SUBS PC,R14,#4)
returns to the instruction following the MCR.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-85
Non-Confidential, Unrestricted Access

System Control Coprocessor

3.2.23 c8, TLB Operations Register

The purpose of the TLB Operations Register is to either:

. invalidate all the unlocked entries in the TLB

. invalidate all TLB entries for an area of memory before the MMU remaps it
. invalidate all TLB entries that match an ASID value.

These operations can be performed on either:
. Instruction TLB

. Data TLB

. Unified TLB.

Note

The ARM1176JZF-S processor has a unified TLB. Any TLB operations specified for the
Instruction or Data TLB perform the equivalent operation on the unified TLB.

The TLB Operations Register is:

. in CP15 c8
. a 32-bit write-only register banked for Secure and Non-secure world operations
. accessible in privileged modes only.

Table 3-82 lists the results of attempted access for each mode.

Table 3-82 Results of access to the TLB Operations Register

Secure Privileged Non-secure Privileged
User
Read Write Read Write

Undefined exception Secure data Undefined exception = Non-secure data Undefined exception

To access the TLB Operations Register write CP15 with:
o Opcode_1 set to 0
. CRn set to c8
. CRm set to:
— ¢5, Instruction TLB
— ¢6, Data TLB
— 7, Unified TLB
o Opcode_2 set to:
— 0, Invalidate TLB unlocked entries
— 1, Invalidate TLB Entry by MVA
— 2, Invalidate TLB Entry on ASID Match.

For example, to invalidate all the unlocked entries in the Instruction TLB:
MCR p15,0,<Rd>,c8, c5,0 ; Write TLB Operations Register

Functions that update the contents of the TLB occur in program order. Therefore, an explicit
data access before the TLB function uses the old TLB contents, and an explicit data access after
the TLB function uses the new TLB contents. For instruction accesses, TLB updates are
guaranteed to have taken effect before the next pipeline flush. This includes Flush Prefetch
Buffer operations and exception return sequences.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-86
Non-Confidential, Unrestricted Access

System Control Coprocessor

Invalidate TLB unlocked entries

Invalidate TLB unlocked entries invalidates all the unlocked entries in the TLB. This function
causes a flush of the prefetch buffer. Therefore, all instructions that follow are fetched after the
TLB invalidation.

Invalidate TLB Entry by MVA

You can use Invalidate TLB Entry by MVA to invalidate all TLB entries for an area of memory
before you remap.

You must perform an Invalidate TLB Entry by MVA of an MVA in each area you want to remap,
section, small page, or large page.

This function invalidates a TLB entry that matches the provided MVA and ASID, or a global
TLB entry that matches the provided MVA.

This function invalidates a matching locked entry.

The Invalidate TLB Entry by MVA operation uses an MVA and ASID as an argument.
Figure 3-47 shows the format of this.

31 121 8 7 0

Modified virtual address SBZ ASID

Figure 3-47 TLB Operations Register MVA and ASID format

Invalidate TLB Entry on ASID Match

This is a single interruptible operation that invalidates all TLB entries that match the provided
ASID value.

This function invalidates locked entries but does not invalidate entries marked as global.

In this processor this operation takes several cycles to complete and the instruction is
interruptible. When interrupted the R14 state is set to indicate that the MCR instruction has not
executed. Therefore, R14 points to the address of the MCR + 4. The interrupt routine then
automatically restarts at the MCR instruction. If the processor interrupts and later restarts this
operation, any entries fetched into the TLB by the interrupt that uses the provided ASID are
invalidated by the restarted invalidation.

The Invalidate TLB Entry on ASID Match function requires an ASID as an argument.
Figure 3-48 shows the format of this.

31 8 7 0

SBZ ASID

Figure 3-48 TLB Operations Register ASID format

3.2.24 9, Data and instruction cache lockdown registers

The purpose of the data and instruction cache lockdown registers is to provide a means to lock
down the caches and therefore provide some control over pollution that applications might
cause. With these registers you can lock down each cache way independently.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-87
Non-Confidential, Unrestricted Access

System Control Coprocessor

There are two cache lockdown registers:
. one Data Cache Lockdown Register
. one Instruction Cache Lockdown Register.

The cache lockdown registers are:

. in CP15 ¢9
. two 32-bit read/write registers, common to the Secure and Non-secure worlds
. accessible in privileged modes only.

Figure 3-49 shows the bit arrangement of the cache lockdown registers.

L bit for
SBO each cache
way

Figure 3-49 Instruction and data cache lockdown register formats

Table 3-83 lists how the bit values correspond with the cache lockdown registers functions.

Table 3-83 Instruction and data cache lockdown register bit functions

Bits

Field name Function

[31:4]

SBO

UNP on reads, SBO on writes.

[3:0]

L bit for each Locks each cache way individually. The L bits for cache ways 3 to 0 are bits [3:0] respectively.
cache way On a line fill to the cache, data is allocated to unlocked cache ways as determined by the

standard replacement algorithm. Data is not allocated to locked cache ways. If a cache way is
not implemented, then the L bit for that way is hardwired to 1, and writes to that bit are ignored.

0 indicates that this cache way is not locked. Allocation to this cache way is determined by the
standard replacement algorithm. This is the reset state.

1 indicates that this cache way is locked. No allocation is performed to this cache way.

The lockdown behavior depends on the CL bit, see c1, Non-Secure Access Control Register on
page 3-55. If the CL bit is not set, the Lockdown entries are reserved for the Secure world.
Table 3-84 lists the results of attempted access for each mode.

Table 3-84 Results of access to the Instruction and Data Cache Lockdown Register

Secure Privileged Non-secure Privileged

CL bit value User

Read Write Read Write
0 Data Data Undefined exception Undefined exception ~ Undefined exception
1 Data Data Data Data Undefined exception

The Data Cache Lockdown Register only supports the Format C method of lockdown. This
method is a cache way based scheme that gives a traditional lockdown function to lock critical
regions in the cache.

A locking bit for each cache way determines if the normal cache allocation mechanisms,
Random or Round-Robin, can access that cache way. For details of the RR bit, that controls the
selection of Random or Round-Robin cache policy, see ¢/, Control Register on page 3-44.

ARMI1176JZF-S processors have an associativity of 4. With all ways locked, the
ARMI1176JZF-S processor behaves as if only ways 3 to 1 are locked and way 0 is unlocked.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-88
Non-Confidential, Unrestricted Access

System Control Coprocessor

To use the Instruction and Data Cache Lockdown Registers read or write CP15 with:
o Opcode_1 set to 0
. CRn set to c9
. CRm set to cO
o Opcode_2 set to:
— 0, for Data Cache
— 1, for Instruction Cache.

For example:

MRC p15, 0, <Rd>, 9, c0, 0 ; Read Data Cache Lockdown Register
MCR pl5, 0, <Rd>, 9, c0, 0 ; Write Data Cache Lockdown Register
MRC p15, @, <Rd>, 9, c0, 1 ; Read Instruction Cache Lockdown Register
MCR p15, 0, <Rd>, 9, c0, 1 ; Write Instruction Cache Lockdown Register

The system must only change a cache lockdown register when it is certain that all outstanding
accesses that might cause a cache line fill are complete. For this reason, the processor must
perform a Data Synchronization Barrier operation before the cache lockdown register changes,
see Data Synchronization Barrier operation on page 3-83.

The following procedure for lock down into a data or instruction cache way i, with N cache
ways, using Format C, ensures that only the target cache way i is locked down.

This is the architecturally defined method for locking data or instructions into caches:

1. Ensure that no processor exceptions can occur during the execution of this procedure, by
disabling interrupts. If this is not possible, all code and data or instructions used by any
exception handlers that can be called must meet the conditions specified in step 2.

2. Ensure that all data or instructions used by the following code, apart from the data or
instructions that are to be locked down, are either:
. in an noncacheable area of memory, including the TCM
. in an already locked cache way.

3. Ensure that the data or instructions to be locked down are in a Cacheable area of memory.

4. Ensure that the data or instructions to be locked down are not already in the cache, using
cache Clean and/or Invalidate instructions as appropriate, see c7, Cache operations on
page 3-69.

5. Enable allocation to the target cache way by writing to the Instruction or Data Cache
Lockdown Register, with the CRm field set to 0, setting L equal to O for bit i and L equal
to 1 for all other ways.

6. Ensure that the memory cache line is loaded into the cache by using an LDR instruction
to load a word from the memory cache line, for each of the cache lines to be locked down
in cache way i.

To lock down an instruction cache use the c7 Prefetch Instruction Cache Line operation
to fetch the memory cache line, see Invalidate, Clean, and Prefetch operations on
page 3-71.

7. Write to the Instruction or Data Cache Lockdown Register, setting L to 1 for bit i and
restore all the other bits to the values they had before this routine was started.
3.2.25 c9, Data TCM Region Register

The purpose of the Data TCM Region Register is to describe the physical base address and size
of the Data TCM region and to provide a mechanism to enable it.

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 3-89
ID012310 Non-Confidential, Unrestricted Access

System Control Coprocessor

The Data TCM Region Register is:

. in CP15 ¢9
. a 32-bit read/write register common to Secure and Non-secure worlds
. accessible in privileged modes only.

If the processor is configured to have 2 Data TCMs, each TCM has a separate Data TCM Region
Register. The TCM Selection Register determines the register in use.

Figure 3-50 shows the bit arrangement for the Data TCM Region Register.

31 121 76 2

Base address (physical address) SBZ/UNP Size

N ® ®» =~
>S5 m|o

Figure 3-50 Data TCM Region Register format

Table 3-85 lists how the bit values correspond with the Data TCM Region Register functions.

Table 3-85 Data TCM Region Register bit functions

Bits

Field name Function

[31:12]

Base address Contains the physical base address of the TCM.

The base address must be aligned to the size of the TCM.
Any bits in the range [(logo(RAMSize)-1):12] are ignored. The base address is 0 at Reset.

[11:7]

[6:2]

(1]

UNP/SBZ.

Size Indicates the size of the TCM on reads2. All other values are reserved:

b00000 = OKB
b00011 = 4KB
b00100 = 8KB
b00101 = 16KB
b00110 = 32KB.

UNP/SBZ.

(0]

En Indicates if the TCM is enabled.

0 = TCM disabled, reset value
1 = TCM enabled.

a. On writes this field is ignored. For more details see Tightly-coupled memory on page 7-7.

Attempts to write to this register in Secure Privileged mode when CP15SDISABLE is HIGH
result in an Undefined exception, see TrustZone write access disable on page 2-9.

Note

When the NS access bit is 0 for Data TCM, see ¢9, Data TCM Non-secure Control Access
Register on page 3-93, attempts to access the Data TCM Region Register from the Non-secure
world cause an Undefined exception.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-90
Non-Confidential, Unrestricted Access

System Control Coprocessor

Table 3-86 lists the results of attempted access for each mode.

Table 3-86 Results of access to the Data TCM Region Register

Secure Privileged Non-secure Privileged

NS access bit value User

Read Write Read Write
0 Data Data Undefined exception Undefined exception = Undefined exception
1 Data Data Data Data Undefined exception

To use the Data TCM Region Register read or write CP15 with:
o Opcode_1 set to 0

. CRn set to ¢9

. CRm set to cl

o Opcode_2 set to 0.

For example:

MRC p15, @, <Rd>, 9, c1, 0 ; Read Data TCM Region Register
MCR p15, @, <Rd>, 9, c1, 0 ; Write Data TCM Region Register

Attempting to change the Data TCM Region Register while a DMA operation is running has
Unpredictable effects but there is no impact on security.
3.2.26 c9, Instruction TCM Region Register

The purpose of the Instruction TCM Region Register is to describe the physical base address
and size of the Instruction TCM region and to provide a mechanism to enable it.

Table 3-87 on page 3-92 lists the purposes of the individuals bits of the Instruction TCM Region
Register.

The Instruction TCM Region Register is:

. in CP15 ¢9
. a 32-bit read/write register common to Secure and Non-secure worlds
. accessible in privileged modes only.

If the processor is configured to have 2 Instruction TCMs, each TCM has a separate Instruction
TCM Region Register. The TCM Selection Register determines the register in use.

Figure 3-51 shows the bit arrangement for the Instruction TCM Region Register.

31 121 76 2

>Sm|o

Base address (physical address) SBZ/UNP Size

N T ®W -~

Figure 3-51 Instruction TCM Region Register format

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 3-91
ID012310 Non-Confidential, Unrestricted Access

System Control Coprocessor

Table 3-87 lists how the bit values correspond with the Instruction TCM Region Register
functions.

Table 3-87 Instruction TCM Region Register bit functions

Bits 4 Function
name
[31:12] Base Contains the physical base address of the TCM. The base address must be aligned to the size of the
address ~ TCM. Any bits in the range [(log2(RAMSize)-1):12] are ignored.
The base address is 0 at Reset.
[11:7] - UNP/SBZ.
[6:2] Size Indicates the size of the TCM on reads?. All other values are reserved:
b00000 = OKB
b00011 = 4KB
b00100 = 8KB
b00101 = 16KB
b00110 = 32KB.
[1] - UNP/SBZ.
[0] En Indicates if the TCM is enabled:

0 = TCM disabled.
1 = TCM enabled.

The reset value of this bit depends on the value of the INITRAM static configuration signal. If
INITRAM is HIGH then this bit resets to 1. If INITRAM is LOW then this bit resets to 0. For more
information see Static configuration signals on page A-4.

a. On writes this field is ignored. For more details see Tightly-coupled memory on page 7-7.

Attempts to write to this register in Secure Privileged mode when CP15SDISABLE is HIGH
result in an Undefined exception, see TrustZone write access disable on page 2-9.

The value of the En bit at Reset depends on the INITRAM signal:
. INITRAM LOW sets En to 0
. INITRAM HIGH sets En to 1.

When INITRAM is HIGH this enables the Instruction TCM directly from reset, with a Base
address of 0x00000. When the processor comes out of reset, it executes the instructions in the
Instruction TCM instead of fetching instructions from external memory, except when the
processor uses high vectors.

Note

When the NS access bit is 0 for Instruction TCM, see ¢9, Instruction TCM Non-secure Control
Access Register on page 3-94, attempts to access the Instruction TCM Region Register from the
Non-secure world cause an Undefined exception.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-92
Non-Confidential, Unrestricted Access

System Control Coprocessor

Table 3-88 lists the results of attempted access for each mode.

Table 3-88 Results of access to the Instruction TCM Region Register

Secure Privileged Non-secure Privileged

NS access bit value User

Read Write Read Write
0 Data Data Undefined exception Undefined exception = Undefined exception
1 Data Data Data Data Undefined exception

To use the Instruction TCM Region Register read or write CP15 with:
o Opcode_1 set to 0

. CRn set to ¢9

. CRm set to cl

o Opcode_2 set to 1.

For example:

MRC p15, @, <Rd>, 9, c1, 1 ; Read Instruction TCM Region Register
MCR p15, 0, <Rd>, 9, c1, 1 ; Write Instruction TCM Region Register

Attempts to change the Instruction TCM Region Register while a DMA operation is running has
Unpredictable effects but there is no impact on security.
3.2.27 ¢9, Data TCM Non-secure Control Access Register

The purpose of the Data TCM Non-secure Access Register is to:
. set access permission to the Data TCM Region Register
. define data in the Data TCM as Secure or Non-secure.

The Data TCM Non-secure Control Access Register is:

. in CP15 ¢9
. a 32-bit read/write register in the Secure world only
. accessible in privileged modes only.

If the processor is configured to have 2 Data TCMs, each TCM has a separate Data TCM
Non-secure Control Access Register. The TCM Selection Register determines the register in
use.

Figure 3-52 shows the bit arrangement for the Data TCM Non-secure Control Access Register.

31 10

SBzZ

NS accessJ

Figure 3-52 Data TCM Non-secure Control Access Register format

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 3-93
ID012310 Non-Confidential, Unrestricted Access

System Control Coprocessor

Table 3-89 lists how the bit values correspond with the register functions.

Table 3-89 Data TCM Non-secure Control Access Register bit functions

Bits

Field name Function

[31:1]
[0]

UNP/SBZ.

NS access Makes Data TCM invisible to the Non-secure world and makes TCM data Secure.

0 = Data TCM Region Register only accessible in the Secure world. Data TCM only visible in
the Secure world and only when the NS Attribute in the page table is 0. The reset value is 0.

1 = Data TCM Region Register accessible in the Secure and Non-secure worlds. Data TCM is

visible in the Non-secure world, and also in the Secure world if the NS Attribute in the page table
is 1.

Table 3-90 lists the effect on TCM operations for different combinations of operating world and
NS bits.

Table 3-90 Effects of NS items for data TCM operation

NS NS page Region
World acces . Control Data
s table visible
Secure 0 1 No - -
1 0 No - -
0 0 Yes Secure privileged only Secure only
1 1 Yes Secure and Non-secure privileged ~ Non-secure only
Non-secure 1 X Yes Secure and Non-secure privileged ~ Non-secure only
0 X No - -

Attempts to write to this register in Secure Privileged mode when CP15SDISABLE is HIGH
result in an Undefined exception, see TrustZone write access disable on page 2-9.

Attempts to access the Data TCM Non-secure Control Access Register in modes other than
Secure privileged result in an Undefined exception.

To use the Data TCM Non-secure Control Access Register read or write CP15 with:
. Opcode_1 set to 0

. CRn set to ¢9

. CRm set to cl

. Opcode_2 set to 2.

For example:

MRC p15,0,<Rd>,c9,cl,2 ; Read Data TCM Non-secure Control Access Register
MCR p15,0,<Rd>,c9,cl,2 ; Write Data TCM Non-secure Control Access Register

3.2.28 ¢9, Instruction TCM Non-secure Control Access Register

The purpose of the Instruction TCM Non-secure Control Access Register is to:

. set access permission to the Instruction TCM Region Register
o define instructions in the Instruction TCM as Secure or Non-secure.
ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 3-94

ID012310

Non-Confidential, Unrestricted Access

System Control Coprocessor

The Instruction TCM Non-secure Control Access Register is:

. in CP15 ¢9
. a 32-bit read/write register in the Secure world only
. accessible in privileged modes only.

If the processor is configured to have 2 Instruction TCMs, each TCM has a separate Instruction
TCM Non-secure Control Access Register. The TCM Selection Register determines the register
in use.

Figure 3-53 shows the bit arrangement for the Instruction TCM Non-secure Control Access
Register.

31 10

SBz

NS accessJ

Figure 3-53 Instruction TCM Non-secure Control Access Register format

Table 3-91 lists how the bit values correspond with the register functions.

Table 3-91 Instruction TCM Non-secure Control Access Register bit functions

Bits

Field name Function

[31:1]
[0]

UNP/SBZ.

NS access Makes Instruction TCM invisible to the Non-secure world and makes TCM data Secure.

0 = Instruction TCM Region Register only accessible in the Secure world. Instruction TCM only
visible in the Secure world and only when the NS Attribute in the page table is 0. The reset value
is 0.

1 = Instruction TCM Region Register accessible in the Secure and Non-secure worlds.
Instruction TCM is visible in the Non-secure world, and also in the Secure world if the NS
Attribute in the page table is 1.

Table 3-92 lists the effect on TCM operations for different combinations of operating world, and
NS bits.

Table 3-92 Effects of NS items for instruction TCM operation

NS NS page Region
World :cces table visible Control Data
Secure 0 1 No - -
1 0 No - -
0 0 Yes Secure privileged only Secure only
1 1 Yes Secure and Non-secure privileged Non-secure only
Non-secure 1 X Yes Secure and Non-secure privileged ~ Non-secure only
0 X No - -

Attempts to write to this register in Secure Privileged mode when CP15SDISABLE is HIGH
result in an Undefined exception, see TrustZone write access disable on page 2-9.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-95
Non-Confidential, Unrestricted Access

System Control Coprocessor

Attempts to access the Instruction TCM Non-secure Control Access Register in modes other
than Secure Privileged result in an Undefined exception.

To use the Instruction TCM Non-secure Control Access Register read or write CP15 with:
. Opcode_1 set to 0

. CRn set to ¢9

. CRm set to cl

. Opcode_2 set to 3.

For example:

MRC p15,0,<Rd>,c9,cl,3 ;Read Instruction TCM Non-secure Control Access Register
MCR p15,0,<Rd>,c9,c1,3 ;Write Instruction TCM Non-secure Control Access Register

3.2.29 ¢9, TCM Selection Register

The purpose of the TCM Selection Register is to determine the bank of CP15 registers related
to TCM configuration in use. These banks consist of:

. ¢9, Data TCM Region Register on page 3-89

. 9, Instruction TCM Region Register on page 3-91

. ¢9, Data TCM Non-secure Control Access Register on page 3-93

. 9, Instruction TCM Non-secure Control Access Register on page 3-94.

The TCM Selection Register is:

. in CP15 ¢9
. a 32-bit read/write register banked in the Secure and Non-secure worlds
. accessible in privileged modes only.

Figure 3-54 shows the bit arrangement for the TCM Selection Register.

31 210

SBzZ

TCM number —!

Figure 3-54 TCM Selection Register format

Table 3-93 lists how the bit values correspond with the TCM Selection Register functions.

Table 3-93 TCM Selection Register bit functions

Bits

Field name Function

[31:2]
[1:0]

UNP/SBZ.

TCM number Selects the bank of CP15 registers related to TCM configuration. Attempts to select a bank

related to a TCM that does not exist are ignored:
b00 = TCM 0, reset value.

b01 = TCM 1. When there is only one TCM on both Instruction and Data sides, write access is
ignored.

b10 = Write access ignored.

bl1 = Write access ignored.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-96
Non-Confidential, Unrestricted Access

System Control Coprocessor

Accesses to the TCM Region Registers and TCM Non-secure Control Access Registers in the
Secure world, access the bank of CP15 registers related to TCM configuration selected by the
Secure TCM Selection Register. Accesses to the TCM Region Registers in the Non-secure
world, access the bank of CP15 registers related to TCM configuration selected by the
Non-secure TCM Selection Register.

Table 3-94 lists the results of attempted access for each mode.

Table 3-94 Results of access to the TCM Selection Register

Secure Privileged Non-secure Privileged
User
Read Write Read Write

Secure data Secure data Non-secure data Non-secure data Undefined exception

To use the TCM Selection Register read or write CP15 c9 with:
. Opcode_1 set to 0

. CRn set to c9

. CRm set to c2

. Opcode_2 set to 0.

For example:

MRC p15,0,<Rd>,c9,c2,0 ; Read TCM Selection register

MCR p15,0,<Rd>,c9,c2,0 ; Write TCM Selection register
3.2.30 c9, Cache Behavior Override Register

The purpose of the Cache Behavior Override Register is to control cache write through and line
fill behavior for interruptible cache operations, or during debug. The register enables you to
ensure that the contents of caches do not change, for example in debug.

The Cache Behavior Override Register is:
. in CP15 ¢9

. a 32 bit read/write register, Table 3-95 on page 3-98 lists the access for each bit in Secure
and Non-secure worlds

. accessible in privileged modes only.

Figure 3-55 shows the bit arrangement for the Cache Behavior Override Register.

31 6 543210

SBzZ

Figure 3-55 Cache Behavior Override Register format

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 3-97
ID012310 Non-Confidential, Unrestricted Access

System Control Coprocessor

Table 3-95 lists how the bit values correspond to the Cache Behavior Override Register.

Table 3-95 Cache Behavior Override Register bit functions

Bits Field name Access Function
[31:6] - - UNP/SBZ.
[5] S_WT Secure only Defines write-through behavior for regions marked as Secure write-back:
0 = Do not force write-through, normal operation, reset value
1 = Force write-through.
[4] S_IL Secure only Defines Instruction Cache linefill behavior for Secure regions:
0 = Instruction Cache linefill enabled, normal operation, reset value
1 = Instruction Cache linefill disabled.
[3] S_DL Secure only Defines Data Cache linefill behavior for Secure regions:
0 = Data Cache linefill enabled, normal operation, reset value
1 = Data Cache linefill disabled.
[2] NS_WT Common Defines write-through behavior for regions marked as Non-secure write-back:
0 = Do not force write-through, normal operation, reset value
1 = Force write-through.
[1] NS_IL Common Defines Instruction Cache linefill behavior for Non-secure regions:
0 = Instruction Cache linefill enabled, normal operation, reset value
1 = Instruction Cache linefill disabled.
[0] NS_DL Common Defines Data Cache linefill behavior for Non-secure regions:
0 = Data Cache linefill enabled, normal operation, reset value
1 = Data Cache linefill disabled.
Table 3-96 lists the actions that result from attempted access for each mode.
Table 3-96 Results of access to the Cache Behavior Override Register
Non-secure Privileged access
Bits Secure Privileged access User access
Read Write
Secure only [5:3] Data Read As Zero Ignored Undefined exception
Common [2:0] Data Data Data Undefined exception

To use the Cache Behavior Override Register read or write CP15 with:

Opcode_1to 0

CRn set to ¢9

CRm set to c8

Opcode_2 set to 0.

For example:

MRC pl5, 0, <Rd>, 9, c8, 0 ; Read Cache Behavior Override Register
MCR p15, @, <Rd>, 9, c8, 0 ; Write Cache Behavior Override Register

You might use the Cache Behavior Override Register during, for example, clean or clean and

invalidate all operations in Non-secure world that might not prevent fast interrupts to the Secure
world if the FW bit is clear, see c1, Secure Configuration Register on page 3-52. In this case, the
Secure world can read or write the Non-secure locations in the cache, so potentially causing the

ARM DDI 0301H

ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-98
Non-Confidential, Unrestricted Access

System Control Coprocessor

cache to contain valid or dirty Non-secure entries when the Non-secure clean or clean and
invalidate all operation completes. To avoid this kind of problem, the Secure side must not
allocate Non-secure entries into the cache and must treat all writes to Non-secure regions that
hit in the cache as write-though.

Note
Three bits, n'WT, nIL and nDL, are also defined for Debug state in CP14, see CP14 c10, Debug
State Cache Control Register on page 13-23, and apply to all Secure and Non-secure regions.
The CP14 register has precedence over the CP15 register when the core is in Debug state, and
the CP15 register has precedence over the CP14 register in functional states.

For more information on cache debug, see Chapter 13 Debug.

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 3-99
ID012310 Non-Confidential, Unrestricted Access

System Control Coprocessor

3.2.31 10, TLB Lockdown Register

The purpose of the TLB Lockdown Register is to control where hardware page table walks place
the TLB entry in either:

. the set associative region of the TLB
. the lockdown region of the TLB, and if in the lockdown region, the entry to write.

Table 3-97 lists the purposes of the individual bits in the TLB Lockdown Register.

The TLB Lockdown Register is:

. in CP15 c10

. 32-bit read/write register common to Secure and Non-secure worlds
. accessible in privileged modes only.

Figure 3-56 shows the bit arrangement of the TLB Lockdown Register.

31 2928 2625 10

SBZ Victim SBZ/UNP P

Figure 3-56 TLB Lockdown Register format
Table 3-97 lists how the bit values correspond with the TLB Lockdown Register functions.

Table 3-97 TLB Lockdown Register bit functions

Bits Field name Function
[31:29] - UNP/SBZ.
[28:26] Victim Specifies the entry in the lockdown region where a subsequent hardware page table walk can
place a TLB entry. The reset value is 0.
0-7, defines the Lockdown region for the TLB entry.
[25:1] - UNP/SBZ.
[0] P Determines if subsequent hardware page table walks place a TLB entry in the lockdown region
or in the set associative region of the TLB:
0 = Place the TLB entry in the set associative region of the TLB, reset value.
1 = Place the TLB entry in the lockdown region of the TLB as defined by the Victim bits
[28:26].
The TLB lockdown behavior depends on the TL bit, see ¢/, Non-Secure Access Control Register
on page 3-55. If the TL bit is not set, the Lockdown entries are reserved for the Secure world.
Table 3-98 lists the results of attempted access for each mode.
Table 3-98 Results of access to the TLB Lockdown Register
Secure Privileged Non-secure Privileged
TL bit value User
Read Write Read Write
Data Data Undefined exception Undefined exception = Undefined exception
Data Data Data Data Undefined exception

The lockdown region of the TLB contains eight entries. TLB organization on page 6-4 describes
the structure of the TLB.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-100
Non-Confidential, Unrestricted Access

System Control Coprocessor

The Invalidate TLB unlocked entries operation does not invalidate TLB entries in the lockdown
region.

Invalidate TLB Entry by MVA and Invalidate TLB Entry on ASID Match operations invalidate
any TLB entries that correspond to the MVA or ASID given in Rd, if they are in the lockdown
region or if they are in the set-associative region of the TLB. See ¢8, TLB Operations Register
on page 3-86 for a description of the TLB invalidate operations.

The victim automatically increments after any page table walk that results in a write puts an
entry into the lockdown part of the TLB.

To use the TLB Lockdown Register read or write CP15 with:
o Opcode_1 set to 0

. CRn settoclO

. CRm set to cO

o Opcode_2 set to 0.

For example:

MRC p15, 0, <Rd>, c10, c0, 0 ; Read TLB Lockdown Register
MCR p15, 0, <Rd>, c10, c0, 0 ; Write TLB Lockdown Register.

Example 3-2 is a code sequence that locks down an entry to the current victim.

Example 3-2 Lock down an entry to the current victim

ADR r1,LockAddr ; set rl to the value of the address to be locked down
MCR p15,0,rl,c8,c7,1 invalidate TLB single entry to ensure that
LockAddr is not already in the TLB

MRC p15,0,R0,c10,c0,0 read the lockdown register

ORR RO,R0Q,#1 set the preserve bit
MCR p15,0,R0,c10,c0,0 write to the lockdown register
LDR rl1,[rl] TLB misses, and entry is Toaded

MRC p15,0,R0,c10,c0,0 read the lockdown register (victim
increments)
clear preserve bit

write to the lockdown register

BIC R0O,R0,#1
MCR p15,0,R0,c10,c0,0

3.2.32 ¢10, Memory region remap registers

The purpose of the memory region remap registers is to remap memory region attributes
encoded by the TEX[2:0], C, and B bits in the page tables that the Data side, Instruction side,
and DMA use. For details of memory remap, see Memory region attributes on page 6-14.

The memory region remap registers are:

. in CP15 c10

. two 32-bit read/write registers banked for the Secure and Non-secure worlds:
— the Primary Region Remap Register
— the Normal Memory Remap Register.

. accessible in privileged modes only.

These registers apply to all memory accesses and this includes accesses from the Data side,
Instruction side, and DMA. Table 3-99 on page 3-102 lists the purposes of the individual bits in
the Primary Region Remap Register. Table 3-101 on page 3-103 lists the purposes of the
individual bits in the Normal Memory Remap Register.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-101
Non-Confidential, Unrestricted Access

System Control Coprocessor

Note

The behavior of the memory region remap registers depends on the TEX remap bit, see c/,
Control Register on page 3-44.

Figure 3-57 shows the arrangement of the bits in the Primary Region Remap Register.

31 20191817161514131211109 8 7 6 56 4 3 2 1 0

UNP/SBZ B [I I I T I I R T

Figure 3-57 Primary Region Remap Register format

Table 3-99 lists the functional bits of the Primary Region Remap Register.

Table 3-99 Primary Region Remap Register bit functions

Bits Field name Function2
[31:20] - UNP/SBZ
[19] - Remaps shareable attribute when S=1 for Normal regions®

1 =reset value

[18] - Remaps shareable attribute when S=0 for Normal regions®
0 =reset value

[17] - Remaps shareable attribute when S=1 for Device regions®

0 = reset value

[16] - Remaps shareable attribute when S= 0 for Device regions®
1=reset value

[15:14] - Remaps {TEX[0],C,B} =bl11
b10 = reset value

[13:12] - Remaps {TEX[0],C,B} =b110
b00 = reset value

[11:10] - Remaps {TEX[0],C,B} =b101
b10 = reset value

[9:8] - Remaps {TEX[0],C,B} =b100
b10 = reset value

[7:6] - Remaps {TEX[0],C,B} =b011
b10 = reset value

[5:4] - Remaps {TEX[0],C,B} =b010
b10 = reset value

[3:2] - Remaps {TEX[0],C,B} = b001
b01 = reset value

[1:0] - Remaps {TEX[0],C,B} = b000
b00 = reset value

a. The reset values ensure that no remapping occurs at reset

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 3-102
ID012310 Non-Confidential, Unrestricted Access

System Control Coprocessor

b. Shareable attributes can map for both shared and non-shared memory. If the Shared bit
read from the TLB or page tables is 0, then the bit remaps to the Not Shared attributes
in this register. If the Shared bit read from the TLB or page tables is 1, then the bit
remaps to the Shared attributes of this register.

Table 3-100 lists the encoding of the remapping for the primary memory type.

Table 3-100 Encoding for the remapping of the primary memory type

Encoding Memory type

b00 Strongly ordered
b01 Device

b10 Normal

bll UNP, normal

Figure 3-58 shows the arrangement of the bits in the Normal Memory Remap Register.

313029 28 27 26 25 24 23 22 21 20

191817161514131211109 8 7 6 5 4 3 2 1 0

Figure 3-58 Normal Memory Remap Register format

Table 3-101 lists how the bit values correspond with the Normal Memory Remap Register

functions.
Table 3-101 Normal Memory Remap Register bit functions

Bits Field name Function2

[31:30] - Remaps Outer attribute for {TEX[0],C,B} =bl111
b01 = reset value

[29:28] - Remaps Outer attribute for {TEX[0],C,B} =b110
b00 = reset value

[27:26] - Remaps Outer attribute for {TEX[0],C,B} =b101
b01 = reset value

[25:24] - Remaps Outer attribute for { TEX[0],C,B} =b100
b00 = reset value

[23:22] - Remaps Outer attribute for {TEX[0],C,B} =b011
bl1 = reset value

[21:20] - Remaps Outer attribute for {TEX[0],C,B} =b010
b10 = reset value

[19:18] - Remaps Outer attribute for {TEX[0],C,B} = b001
b00 = reset value

[17:16] - Remaps Outer attribute for {TEX[0],C,B} = b000
b00 = reset value

[15:14] - Remaps Inner attribute for {TEX[0],C,B} =bl111
b01 = reset value

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 3-103

ID012310 Non-Confidential, Unrestricted Access

System Control Coprocessor

Table 3-101 Normal Memory Remap Register bit functions (continued)

Bits Field name Function2

[13:12] - Remaps Inner attribute for {TEX[0],C,B} =b110
b00 = reset value

[11:10] - Remaps Inner attribute for {TEX[0],C,B} =b101
b10 = reset value

[9:8] - Remaps Inner attribute for { TEX[0],C,B} = b100

b00 = reset value

[7:6] - Remaps Inner attribute for {TEX[0],C,B} =b011
b1l =reset value

[5:4] - Remaps Inner attribute for {TEX[0],C,B} = b010
b10 = reset value

[3:2] - Remaps Inner attribute for { TEX[0],C,B} = b001

b00 = reset value

[1:0] - Remaps Inner attribute for { TEX[0],C,B} = b000
b00 = reset value

a. The reset values ensure that no remapping occurs at reset.

Table 3-102 lists the encoding for the Inner or Outer cacheable attribute bit fields I0 to I7 and
00 to O7.

Table 3-102 Remap encoding for Inner or Outer cacheable attributes

Encoding Cacheable attribute

b00 Noncacheable

b01 Write-back, allocate on write

bl10 Write-through, no allocate on write
b1l Write-back, no allocate on write

Attempts to write to this register in Secure Privileged mode when CP15SDISABLE is HIGH
result in an Undefined exception, see TrustZone write access disable on page 2-9.

Table 3-103 lists the results of attempted access for each mode.

Table 3-103 Results of access to the memory region remap registers

Secure Privileged Non-secure Privileged
User
Read Write Read Write

Secure data Secure data Non-secure data Non-secure data Undefined exception

To use the memory region remap registers read or write CP15 with:
. Opcode_1 set to 0

. CRn setto cl0

. CRm set to c2

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 3-104
ID012310 Non-Confidential, Unrestricted Access

System Control Coprocessor

. Opcode_2 set to:
— 0, Primary Region Remap Register
— 1, Normal Memory Remap Register.

For example:

MRC pl5, @, <Rd>, c10, c2, 0 ;Read Primary Region Remap Register
MCR p15, 0, <Rd>, c10, c2, 0 ;Write Primary Region Remap Register
MRC p15, 0, <Rd>, c10, c2, 1 ;Read Normal Memory Remap Register

MCR pl15, 0, <Rd>, cl10, c2, 1 ;Write Normal Memory Remap Register

Memory remap occurs in two stages:

1. The processor uses the Primary Region Remap Register to remap the primary memory
type, Normal, Device, or Strongly Ordered, and the shareable attribute.

2. For memory regions that the Primary Region Remap Register defines as Normal memory,
the processor uses the Normal Memory Remap Register to remap the inner and outer
cacheable attributes.

The behavior of the memory region remap registers depends on the TEX remap bit, see c/,
Control Register on page 3-44. If the TEX remap bit is set, the entries in the memory region
remap registers remap each possible value of the TEX[0], C and B bits in the page tables. You
can therefore set your own definitions for these values. If the TEX remap bit is clear, the memory
region remap registers are not used and no memory remapping takes place. For more
information see Memory region attributes on page 6-14.

The memory region remap registers are expected to remain static during normal operation.
When you write to the memory region remap registers, you must invalidate the TLB and perform
an IMB operation before you can rely on the new written values. You must also stop the DMA
if it is running or queued.

Note

You cannot remap the NS bit. This is for security reasons.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-105
Non-Confidential, Unrestricted Access

System Control Coprocessor

3.2.33 c11, DMA identification and status registers

The purpose of the DMA identification and status registers is to define:
. the DMA channels that are physically implemented on the particular device
. the current status of the DMA channels.

Processes that handle DMA can read this register to determine the physical resources
implemented and their availability.

The DMA Identification and Status Register is:

. in CP15 cl1

. four 32-bit read-only registers common to Secure and Non-secure worlds
. accessible only in privileged modes.

Figure 3-59 shows the format of DMA identification and status registers 0-3.

31 2

UNP

e e =S
o IO

Figure 3-59 DMA identification and status registers format

Table 3-104 lists how the bit values correspond with the DMA identification and status registers.

Table 3-104 DMA identification and status register bit functions

Bits Field name Function

[31:2] - UNP/SBZ

[1] CHI Provides information on DMA Channel 1 functions:
0 = DMA Channel 1 function? disabled
1 = DMA Channel 1 function? enabled.

[0] CHO Provides information on DMA Channel 0 functions:
0 = DMA Channel 0 function? disabled
1 = DMA Channel 0 function? enabled.

a. See Table 3-105 for the function of the channel that Opcode_2 of the MRC
instruction determines.

Table 3-105 lists the Opcode_2 values used to select the DMA channel function.

Table 3-105 DMA Identification and Status Register functions

Opcode_2 Function

0 Indicates channel present:
0 = the channel is not Present
1 = the channel is Present.

1 Indicates channel queued:
0 = the channel is not Queued

1 = the channel is Queued.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-106
Non-Confidential, Unrestricted Access

System Control Coprocessor

Table 3-105 DMA Identification and Status Register functions (continued)

Opcode_2 Function

2 Indicates channel running:
0 = the channel is not Running
1 = the channel is Running.

3 Indicates channel interrupting:
0 = the channel is not Interrupting
1 = the channel is Interrupting, through completion or an error.

4-7 Reserved. Results in an Undefined exception.

Access in the Non-secure world depends on the DMA bit, see cl, Non-Secure Access Control
Register on page 3-55. The processor can only access these registers in Privileged modes.
Table 3-106 lists the results of attempted access for each mode.

Table 3-106 Results of access to the DMA identification and status registers

Secure Privileged Non-secure Privileged
DMA bit User

Read Write Read Write
0 Data Undefined exception Undefined exception Undefined exception Undefined exception
1 Data Undefined exception Data Undefined exception ~ Undefined exception

To access the DMA identification and status registers in a privileged mode read CP15 with:
. Opcode_1 set to 0
. CRnsettocll
. CRm set to cO
. Opcode_2 set to:
— 0, Present
— 1, Queued
— 2, Running
— 3, Interrupting.

For example:

MRC p15, @, <Rd>, cl1, cO,
MRC p15, @, <Rd>, cll, cO,
MRC p15, 0, <Rd>, cl1, c0,
MRC p15, 0, <Rd>, cl1, cO,

; Read DMA Identification and Status Register present

; Read DMA Identification and Status Register queued

; Read DMA Identification and Status Register running

; Read DMA Identification and Status Register interrupting.

wN RS

3.2.34 c11, DMA User Accessibility Register

The purpose of the DMA User Accessibility Register is to determine if a User mode process can
access the registers for each channel.

The DMA User Accessibility Register is:

. in CP15 cl1

. a 32-bit read/write register common to the Secure and Non-secure worlds
. accessible in privileged modes only.

Figure 3-60 on page 3-108 shows the bit arrangement for the DMA User Accessibility Register.

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 3-107
ID012310 Non-Confidential, Unrestricted Access

31

System Control Coprocessor

SBZ/UNP

- C
oC |o

Figure 3-60 DMA User Accessibility Register format

Table 3-107 lists how the bit values correspond with the DMA User Accessibility Register.

Table 3-107 DMA User Accessibility Register bit functions

Bits

Field name

Function

[31:2]
[1]

Ul

UNP/SBZ.

Indicates if a User mode process can access the registers for channel 1:

0 = User mode cannot access channel 1. User mode accesses cause an Undefined exception.
This is the reset value.

1 = User mode can access channel 1.

(0]

uo

Indicates if a User mode process can access the registers for channel 0:

0 = User mode cannot access channel 0. User mode accesses cause an Undefined exception.
This is the reset value.

1 = User mode can access channel 0.

Access in the Non-secure world depends on the DMA bit, see cl, Non-Secure Access Control
Register on page 3-55. The processor can only access this register in Privileged modes.
Table 3-108 lists the results of attempted access for each mode.

Table 3-108 Results of access to the DMA User Accessibility Register

Secure Privileged Non-secure Privileged

DMA bit User
Read Write Read Write

0 Data Data Undefined exception Undefined exception = Undefined exception
1 Data Data Data Data Undefined exception

To access the DMA User Accessibility Register read or write CP15 with:

. Opcode_1 set to 0

. CRnsettocll

. CRm settocl

. Opcode_2 set to0.

For example:

MRC pl5, @, <Rd>, cll, c1, 0 ; Read DMA User Accessibility Register

MCR p15, 0, <Rd>, cl1, c1, 0 ; Write DMA User Accessibility Register

The registers that you can access in User mode when the U bit = 1 for the current channel are:

cl1, DMA enable registers on page 3-110

cll, DMA Control Register on page 3-112

cl1, DMA Internal Start Address Register on page 3-114
cl1, DMA External Start Address Register on page 3-115
cll, DMA Internal End Address Register on page 3-116
cl1, DMA Channel Status Register on page 3-117.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-108
Non-Confidential, Unrestricted Access

System Control Coprocessor

You can access the DMA channel Number Register, see c/1, DMA Channel Number Register,
in User mode when the U bit for any channel is 1.

The contents of these registers must be preserved on a task switch if the registers are
User-accessible.

If the U bit for the currently selected channel is set to 0, and a User process attempts to access
any of these registers the processor takes an Undefined instruction trap.

3.2.35 c¢11, DMA Channel Number Register

The purpose of the DMA Channel Number Register is to select a DMA channel.
Table 3-109 lists the purposes of the individual bits in the DMA Channel Number Register.

The DMA Channel Number Register is:

. in CP15 cl1

. a 32-bit read/write register common to Secure and Non-secure worlds
. accessible in user and privileged modes.

Figure 3-61 shows the bit arrangement for the DMA Channel Number Register.

31 1

SBZ/UNP

Z0 |o

Figure 3-61 DMA Channel Number Register format
Table 3-109 lists how the bit values correspond with the DMA Channel Number Register.

Table 3-109 DMA Channel Number Register bit functions

Bits Field name Function
[31:1] - UNP/SBZ.
[0] CN Indicates DMA Channel selected:

0 = DMA Channel 0O selected, reset value
1 = DMA Channel 1 selected.

Access in the Non-secure world depends on the DMA bit, see c1, Non-Secure Access Control
Register on page 3-55. The processor can access this register in User mode if the U bit, see ¢/,
DMA User Accessibility Register on page 3-107, for any channel is set to 1. Table 3-110 lists the
results of attempted access for each mode.

Table 3-110 Results of access to the DMA Channel Number Register

Secure Non-secure Non-secure
U1 and DMA .. L. Secure User
U0 bits bit Privileged Privileged Read or Write User
Read or Write Read or Write Read or Write
Both 0 0 Data Undefined exception Undefined exception ~ Undefined exception
1 Data Data Undefined exception Undefined exception
Eitherorboth1 0 Data Undefined exception Data Undefined exception
1 Data Data Data Data

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved.
Non-Confidential, Unrestricted Access

3-109

System Control Coprocessor

To access the DMA Channel Number Register read or write CP15 with:
o Opcode_1 set to 0

. CRnsettocll

. CRm set to c2

o Opcode_2 set to 0.

For example:

MRC p15, 0, <Rd>, cl1, c2, 0 ; Read DMA Channel Number Register
MCR p15, 0, <Rd>, cl1, c2, 0 ; Write DMA Channel Number Register

3.2.36 c11, DMA enable registers

The purpose of the DMA enable registers is to start, stop or clear DMA transfers for each
channel implemented.

The DMA enable registers are:
. in CP15cl1

. three 32-bit write only registers for each DMA channel common to Secure and
Non-secure worlds

. accessible in user and privileged modes.
The commands that operate through the registers are:

Stop The DMA channel ceases to do memory accesses as soon as possible after the
level one DMA issues the instruction. This acceleration approach cannot be used
for DMA transactions to or from memory regions marked as Device. The DMA
canissue a Stop command when the channel status is Running. The DMA channel
can take several cycles to stop after the DMA issues a Stop instruction. The
channel status remains at Running until the DMA channel stops. The channel
status is set to Complete or Error at the point that all outstanding memory accesses
complete. The Start Address Registers contain the addresses the DMA requires to
restart the operation when the channel stops.

If the Stop command occurs when the channel status is Queued, the channel status
changes to Idle. The Stop command has no effect if the channel status is not
Running or Queued.

cl1, DMA Channel Status Register on page 3-117 describes the DMA channel
status.

Start The Start command causes the channel to start DMA transfers. If the other DMA
channel is not in operation the channel status is set to Running on the execution
of a Start command. If the other DMA channel is in operation the channel status
is set to Queued.

A channel is in operation if either:

. its channel status is Queued
. its channel status is Running
. its channel status is Complete or Error, with either the Internal or External

Address Error Status indicating an Error.
cl1, DMA Channel Status Register on page 3-117 describes DMA channel status.
Clear The Clear command causes the channel status to change from Complete or Error
to Idle. It also clears:
. all the Error bits for that DMA channel

ARM DDI 0301H Copyright © 2004-2009 ARM Limited. All rights reserved. 3-110
ID012310 Non-Confidential, Unrestricted Access

System Control Coprocessor

. the interrupt that is set by the DMA channel as a result of an error or
completion, see c/1, DMA Control Register on page 3-112 for more details.

The Clear command does not change the contents of the Internal and External
Start Address Registers. A Clear command has no effect when the channel status
is Running or Queued.

Access in the Non-secure world depends on the DMA bit, see c1, Non-Secure Access Control

Register on page 3-55. The processor can access these registers in User mode if the U bit, see

cll, DMA User Accessibility Register on page 3-107, for the currently selected channel is set to
1. Table 3-111 lists the results of attempted access for each mode.

Table 3-111 Results of access to the DMA enable registers

Secure Non-secure Secure User Non-secure User
U DMA Privileged Privileged
bit Dbit
Read Write Read Write Read Write Read Write
0 0 Undefined Data Undefined Undefined Undefined Undefined Undefined Undefined
exception exception exception exception exception exception exception
1 Undefined Data Undefined Data Undefined Undefined Undefined Undefined
exception exception exception exception exception exception
1 0 Undefined Data Undefined Undefined Undefined Data Undefined Undefined
exception exception exception exception exception exception
1 Undefined Data Undefined Data Undefined Data Undefined Data
exception exception exception exception

To access a DMA Enable Register set the DMA Channel Number Register to the appropriate
DMA channel and write CP15 with:

. Opcode_1 set to 3
. CRnsettocll
. CRm set to c3
. Opcode_2 set to:
— 0, Stop
— 1, Start
— 2, Clear.

For example:

MCR p15, 0, <Rd>, cl1, c3, 0 ; Stop DMA Enable Register
MCR pl5, 0, <Rd>, cll, c3, 1 ; Start DMA Enable Register
MCR pl5, 0, <Rd>, cll, c3, 2 ; Clear DMA Enable Register

Debug implications for the DMA

The level one DMA behaves as a separate engine from the processor core, and when started,
works autonomously. When the level one DMA has channels with the status of Running or
Queued, these channels continue to run, or start running, even if a debug mechanism stops the
processor. This can cause the contents of the TCM to change while the processor stops in debug.
To avoid this situation you must ensure the level one DMA issues a Stop command to stop
Running or Queued channels when entering debug.

ARM DDI 0301H

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-111
Non-Confidential, Unrestricted Access

System Control Coprocessor

3.2.37 c11, DMA Control Register

The purpose of the DMA Control Register for each channel is to control the operations of that
DMA channel. Table 3-112 lists the purposes of the individual bits in the DMA Control
Register.

The DMA Control Register is:

in CP15 cl1

one 32-bit read/write register for each DMA channel common to Secure and Non-secure
worlds

accessible in user and privileged modes.

Figure 3-62 shows the bit arrangement for the DMA Control Register.

31 30 29 28 27 26 25 2019 8 7 210
TID|I|I|FfU
RlTlclelTIM UNP/SBZ ST UNP/SBZ TS

Figure 3-62 DMA Control Register format

Table 3-112 lists how the bit values correspond with the DMA Control Register.

Table 3-112 DMA Control Register bit functions

Bits

Field name

Function

(31]

TR

Indicates target TCM:
0 = Data TCM, reset value
1 = Instruction TCM.

(30]

(29]

DT

1C

Indicates direction of transfer:
0 = Transfer from level two memory to the TCM, reset value
1 = Transfer from the TCM to the level two memory.

Indicates whether the DMA channel must assert an interrupt on completion of the DMA
transfer, or if the DMA is stopped by a Stop command, see c/1, DMA enable registers on
page 3-110.

The interrupt is deasserted, from this source, if the processor performs a Clear operation on the
channel that caused the interrupt. For more details see c/1, DMA enable registers on

page 3-110.

The U bit? has no effect on whether an interrupt is generated on completion:

0 = No Interrupt on Completion, reset value

1 = Interrupt on Completion.

(28]

(27]

IE

FT

Indicates that the DMA channel must assert an interrupt on an error.

The interrupt is deasserted, from this source, when the channel is set to Idle with a Clear
operation, see cl1, DMA enable registers on page 3-110:

0 = No Interrupt on Error, if the U bit is 0, reset value

1 = Interrupt on Error, regardless of the U bit2. All DMA transactions on channels that have the
U bit set to 1 Interrupt on Error regardless of the value written to this bit.

Read As One, Write ignored
In the ARM1176JZF-S this bit has no effect.

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-112
Non-Confidential, Unrestricted Access

System Control Coprocessor

Table 3-112 DMA Control Register bit functions (continued)

Bits Field name Function

[26] UM Indicates that the permission checks are based on the DMA being in User or privileged mode.
The UM bit is provided so that the User mode can be emulated by a privileged mode process.
For a User mode process the setting of the UM bit is irrelevant and behaves as if set to 1:

0 = Transfer is a privileged transfer, reset value
1 = Transfer is a User mode transfer.

[25:20] - UNP/SBZ.

[19:8] ST Indicates the increment on the external address between each consecutive access of the DMA.
A Stride of zero, reset value, indicates that the external address is not to be incremented. This
is designed to facilitate the accessing of volatile locations such as a FIFO.
The Stride is interpreted as a positive number, or zero.
The internal address increment is not affected by the Stride, but is fixed at the transaction size.
The stride value is in bytes.
The value of the Stride must be aligned to the Transaction Size, otherwise this results in a bad
parameter error, see cI1, DMA Channel Status Register on page 3-117.

[7:2] - UNP/SBZ.

[1:0] TS Indicates the size of the transactions that the DMA channel performs. This is particularly

important for Device or Strongly Ordered memory locations because it ensures that accesses
to such memory occur at their programmed size:

b00 = Byte, reset value

b01 = Halfword

b10 = Word

b11 = Doubleword, 8 bytes.

a. See cl1, DMA User Accessibility Register on page 3-107.

Access in the Non-secure world depends on the DMA bit, see cl, Non-Secure Access Control
Register on page 3-55. The processor can access this register in User mode if the U bit, see ¢/,
DMA User Accessibility Register on page 3-107, for the currently selected channel is set to 1.
Table 3-113 lists the results of attempted access for each mode.

Table 3-113 Results of access to the DMA Control Register

Ubit DMA bit Secure Privileged Non-secure Privileged Secure User Non-secure User
Read or Write Read or Write Read or Write Read or Write
0 0 Data Undefined exception Undefined exception ~ Undefined exception
1 Data Data Undefined exception = Undefined exception
1 0 Data Undefined exception Data Undefined exception
1 Data Data Data Data

To access the DMA Control Register set the DMA Channel Number Register to the appropriate
DMA channel and read or write CP15 with:

o Opcode_1 set to 0
. CRnsettocll
. CRm set to c4
. Opcode_2 set to 0.

For example:

ARM DDI 0301H
ID012310

Copyright © 2004-2009 ARM Limited. All rights reserved. 3-113
Non-Confidential, Unrestricted Access

System Control Coprocessor

MRC p15, 0, <Rd>, cl1, c4, 0 ; Read DMA Control Register
MCR p15, 0, <Rd>, cll, c4, 0 ; Write DMA Control Register

While the channel has the status of Running or Queued, any attempt to write to the DMA
Control Register results in architecturally Unpredictable behavior. For ARM1176JZF-S
processors writes to the DMA Control Register have no effect when the DMA channel is
running or queued.

3.2.38 c11, DMA Internal Start Address Register

The purpose of the DMA Internal Start Address Register for each channel is to define the first
address in the TCM for that channel. That is, it defines the first address that data transfers go to
or from.

The DMA Internal Start Address Register is:
. in CP15 cl1

. one 32-bit read/write register for each DMA channel common to Secure and Non-secure
worlds
. accessible in user and privileged modes.

The DMA Internal Start Address Register bits [31:0] contain the Internal Start VA.

Access in the Non-secure world depends on the DMA bit, see c1, Non-Secure Access Control
Register on page 3-55. The processor can access this register in User mode if the U bit, see ¢/,
DMA User Accessibility Register on page 3-107, for the currently selected channel is set to 1.
Table 3-114 lists the results of attempted access for each mode.

Table 3-114 Results of access to the DMA Internal Start Address Register

Ubit DMA bit Secure Privileged Non-secure Privileged Secure User Non-secure User
Read or Write Read or Write Read or Write Read or Write
0 0 Data Undefined exception Undefined exception Undefined exception
1 Data Data Undefined exception = Undefined exception
1 0 Data Undefined exception Data Undefined exception
1 Data Data Data Data

To acce