Содержание

Беспроводная метеостанция

meteo_overview.jpg

Что это такое?

В этой статье мы расскажем о том, как собрать полноценную метеостанцию, передающую данные о погоде на широко известный сервис «народный мониторинг».

Наша метеостанция будет состоять из двух устройств: компактного автономного устройства, измеряющего погодные показатели, и устройства-ретранслятора, получающего эти показатели и отправляющего их на «народный мониторинг». Устройства будут связываться по беспроводному каналу связи на частоте 433 МГц. Автономная часть будет питаться от трёх пальчиковых батареек и сможет просуществовать на одном комплекте батарей до года при периоде опроса датчиков в 20 мин.

Такая конструкция позволяет не сверлить стены для прокладки проводов с улицы, где необходимо производить измерения, в помещение, где результатами этих измерений надо пользоваться.

Что для этого необходимо?

meteo_collage.jpg

Для изготовления автономного передатчика нам понадобятся:

  1. Держатель пальчиковых батареек на x3 AA

Для изготовления ретранслятора нам понадобятся:

Так же удобно установить два светодиода для индикации процессов:

Для звуковой индикации разряда батареи автономной части удобно использовать пьезо-пищалку:

Как это собрать?

Сборка автономной части

  1. Припаяйте штыри к проводам батарейного отсека и воткните их в макетную плату. На этапе разработки очень удобно закрепить все элементы на какой-нибудь основе (мы использовали обычный картон). meteo_build_sender_0.jpg
  2. Припаяйте штыри к отверстиям на длинных сторонах Teensy и вставьте плату в макетку. Подсоедините питание. meteo_build_sender_1.jpg
  3. Вставьте беспроводной передатчик так, чтобы его контакт 0 оказался соединённым с контактом GND Teensy. Контакт 2 передатчика проводом соедините с контактом 5 Teensy. meteo_build_sender_2.jpg
  4. Подсоедините резисторы так, как показано на рисунке. Это наш делитель напряжения для функции измерения напряжения питания. meteo_build_sender_3.jpg
  5. Подключите через трёхпроводные шлейфы со штырьковыми контактами датчик температуры и влажности. meteo_build_sender_4.jpg

Сборка ретранслятора

  1. Вставьте Ethernet шилд в Arduino Uno, установите сверху макетку и вставьте в неё беспроводной приёмник. Подключите вывод 7 Arduino к выводу 2 приёмника. meteo_build_receiver_0.jpg
  2. Подключите питание и землю приёмника к выводам GND и 5V Arduino. meteo_build_receiver_1.jpg

На этом сборка минимально функционального ретранслятора закончена. Если вы хотите установить светодиодную индикацию и звуковую сигнализацию, то выполните пункты ниже.

  1. Установите светодиоды и резисторы, подключите красный светодиод к контакту 6, зелёный — к контакту 5. meteo_build_receiver_2.jpg
  2. Установите пьезопищалку, подключите её к контакту 4. meteo_build_receiver_3.jpg

Исходный код

Код автономной части

meteo_sensor.ino
#include <Arduino.h>
#include <SHT1x.h>
#include <LowPower_Teensy3.h>
#include <ampline.h>
 
 
// Таймаут между посылками (не более 65535)
#define TIMEOUT 60000
 
// Количество попыток отправки посылки
#define ATTEMPTS 3
 
// Информационный пин передатчика
#define RF_PIN 5
 
// Пины датчика температуры и влажности
#define GND1_PIN 10
#define VCC1_PIN 11
#define GND2_PIN 7
#define VCC2_PIN 8
#define DATA_PIN 12
#define CLK_PIN  9
 
 
AmperkaLine rf(RF_PIN);
SHT1x sht1x(CLK_PIN, DATA_PIN);
 
 
void loop(void);
 
 
// Функция усыпления платы. Каждые TIMEOUT секунд
// будет вызываться функция loop_func.
TEENSY3_LP LP = TEENSY3_LP();
sleep_block_t* LP_config;
 
void sleep_mode(void)
{
    LP_config = (sleep_block_t*)calloc(1,sizeof(sleep_block_t));
 
    // Просыпаться будем по таймеру
    LP_config->modules = (LPTMR_WAKE);
    // Задаём таймаут для таймера
    LP_config->lptmr_timeout = TIMEOUT;
    // По истечении таймаута будет вызываться функция loop
    LP_config->callback = loop;
 
    LP.Hibernate(LP_config);
}
 
 
// Функция включения периферии
void periferial_start(void)
{
    // Включаем линию передачи данных
    pinMode(RF_PIN, OUTPUT);
 
    // Включаем питания и земли датчиков температуры и влажности
    pinMode(GND1_PIN, OUTPUT);
    pinMode(GND2_PIN, OUTPUT);
    pinMode(VCC1_PIN, OUTPUT);
    pinMode(VCC2_PIN, OUTPUT);
    digitalWrite(GND1_PIN, LOW);
    digitalWrite(GND2_PIN, LOW);
    digitalWrite(VCC1_PIN, HIGH);
    digitalWrite(VCC2_PIN, HIGH);
 
    // Включаем светодиод для индикации передачи
    pinMode(LED_BUILTIN, OUTPUT);
    digitalWrite(LED_BUILTIN, HIGH);
 
    // Выбираем в качестве опорного напряжения внутренний
    // источник (=1.2 В)
    analogReference(INTERNAL);
}
 
 
// Функция выключения периферии
void periferial_stop(void)
{
    // Выключаем линию передачи данных
    pinMode(RF_PIN, INPUT);
 
    // Выключаем датчик температуры и влажности
    pinMode(GND1_PIN, INPUT);
    pinMode(GND2_PIN, INPUT);
    pinMode(VCC1_PIN, INPUT);
    pinMode(VCC2_PIN, INPUT);
 
    pinMode(18, INPUT_PULLUP);
    pinMode(19, INPUT_PULLUP);
 
    // Выключаем светодиод
    digitalWrite(LED_BUILTIN, LOW);
}
 
void setup(void)
{
    // Ничего не инициализируем, сразу засыпаем
    sleep_mode();
}
 
// Эта функция выполняется раз в TIMEOUT секунд
void loop(void)
{
    unsigned long msg;
    byte temp, humidity, voltage;
 
    // Включаем периферию
    periferial_start();
 
    // Подождём, пока включится датчик температуры и влажности
    delay(30);
 
    // Получаем входные данные с сенсоров
    temp = (byte)(sht1x.readTemperatureC() + 40.)*2;
    humidity = (byte)sht1x.readHumidity();
    voltage = analogRead(A0)/4;
 
    // Составляем из данных посылку
    msg = 0;
    msg |= voltage;
    msg <<= 8;
    msg |= humidity;
    msg <<= 8;
    msg |= temp;
 
    // Отправляем несколько раз посылку
    for(int i = 0; i < ATTEMPTS; i++) rf.send(msg);
 
    // Выключаем периферию
    periferial_stop();
 
    // После выхода из функции плата снова уснёт
}

Код платы, работающей в помещении

receiver.ino
#include <Arduino.h>
#include <SPI.h>
#include <Ethernet.h>
#include <ampline.h>
 
 
byte mac[] = { 0x90, 0xA7, 0xDA, 0x0F, 0xBC, 0x75 };
 
char server[] = "narodmon.ru";
 
EthernetClient client;
 
const int rfpin = 7;
AmperkaLine rf(rfpin);
 
void setup(void)
{
    pinMode(rfpin, INPUT);
    pinMode(6, OUTPUT);
 
    Serial.begin(9600);
    Serial.println("Started.");
}
 
void loop(void)
{
    static unsigned long pushtimeout = 0;
    static float temp, humidity, voltage;
    unsigned long msg;
    int res;
 
    if((res = rf.receive(&msg)) == 0)
    {
        temp = ((float)(msg&0xFF))/2. - 40.;
        msg >>= 8;
        humidity = (float)(msg&0xFF);
        msg >>= 8;
        voltage = (float)(msg&0xFF) / 256. * 1.2 * 10 * 1.1;
 
        digitalWrite(6, HIGH);
 
        Serial.print("Temp: ");
        Serial.print(temp);
        Serial.print(", humidity: ");
        Serial.print(humidity);
        Serial.print(", voltage: ");
        Serial.println(voltage);
 
        digitalWrite(6, LOW);
    }
    else Serial.println('E');
 
    if(millis() - pushtimeout > 60000*5)
    {
        pushtimeout = millis();
 
        Serial.println("Starting Ethernet...");
 
        if (Ethernet.begin(mac) == 0)
        {
            Serial.println("Failed to configure Ethernet using DHCP");
            while(1) { }
        }
        delay(1000);
        Serial.println("connecting...");
 
        if (client.connect(server, 8283))
        {
            Serial.println("connected");
 
            client.println("#90-A7-DA-0F-BC-75#Sensor#55.751775#37.616856#0.0");
 
            client.print("#90A7DA0FBC7501#");
            client.print(temp, DEC);
            client.println("#In");
 
            client.print("#90A7DA0FBC7502#");
            client.print(humidity, DEC);
            client.println("#Humidity");
 
            client.print("#90A7DA0FBC7503#");
            client.print(voltage, DEC);
            client.println("#Voltage");
 
            client.println("##");
        } 
        else Serial.println("connection failed");
 
        {
            unsigned long tm = millis();
 
            while(millis() - tm < 5000) {
                if (client.available()) {
                    char c = client.read();
                    Serial.print(c);
                }
            }
        }
 
        client.stop();
    }
}

Регистрация метеостанции в «Народном мониторинге»

Чтобы данные, передаваемые нашим устройством, корректно отображались на народном мониторинге, необходимо выполнить следующее:

  1. Установить уникальный MAC-адрес устройства.
  2. Зарегистрироваться на сайте «Народного мониторинга».
  3. Авторизоваться.
  4. Открыть список датчиков и установить номиналы передаваемых данных.

Демонстрация работы устройства

Что ещё можно сделать?

  1. Мы установили только сенсор температуры и влажности. Но у Teensy остаётся ещё много свободных ножек, т.ч. можно добавить разных датчиков: освещённости, атмосферного давления, скорости ветра и т.д.
  2. Teensy прямо на борту имеет часы реального времени (RTC). Для их работоспособности не хватает только кварца. Можно купить кварц на 32,768 КГц в любом магазине радиоэлементов и припаять его. Тогда можно пробуждать Teensy по будильнику RTC. Достоинство в том, что можно будить устройство чаще в те часы, когда нужны более точные показания. Например, в рабочее время будить устройство каждые 5 минут, а в остальное — каждые полчаса.